Factoring Trinomials Using the Key Number Method

(http://www.sheboygan.uwc.edu/developmental-math/BAW/thirteen/lesson13.htm)

A trinomial is a polynomial with exactly three terms. These polynomials have a very special form since they are the typical polynomials that come out of the FOIL method for multiplying two binomials. The Key Number Method of factoring applies to any trinomials $ax^2 + bx + c$, where a, b, and c are integers and x represents any letter variable or string of variables.

<table>
<thead>
<tr>
<th>Key Number Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Factor $ax^2 + bx + c$</td>
</tr>
</tbody>
</table>

Example 1: Factor $6x^2 + x - 15$.

Find the key number: $(6)(-15) = -90$.

Find factors of -90 that add up to 1 (the middle term is 1x). Since $90 = 1 \cdot 90$ or $2 \cdot 45$ or $3 \cdot 30$ or $5 \cdot 18$ or $6 \cdot 15$ or $9 \cdot 10$, it looks like $+10$ and -9 will work since they multiply to -90 and add to +1.

Substitute two terms for the middle term whose coefficients equal the factors found in step 2.

$6x^2 + x - 15 = 6x^2 + 10x - 9x - 15$

Factor by grouping.

$6x^2 + 10x - 9x - 15$

$= (6x^2 + 10x) + (-9x - 15)$

$= 2x(3x + 5) - 3(3x + 5)$

$= (3x + 5)(2x - 3)$

$= (3x + 5)(2x - 3)$

$= 6x^2 - 9x + 10x - 15$

$= 6x^2 + x - 15$

Step 1: Calculate the product of the first and last coefficients: $a \cdot c$. This is called the key number.

Step 2: Find two factors of the key number ac whose sum is b (the middle coefficient).

Step 3: Rewrite the original trinomial as a four term polynomial: replace the middle term by two terms that have coefficients equal to the factors found in step 2.

Step 4: Factor the four term polynomial by grouping.

Step 5: Check by multiplying (use FOIL).