
Algebra Preliminaries for Finite Math

(revised June, 2012)

- **1.** Graph the lines 3x + 2y = 18 and 2x + 5y = 20 in the given coordinate system.
- 2. On the graph from #1, shade the solution to the system of inequalities:

 $\begin{array}{l} 3x + 2y \leq 18 \\ 2x + 5y \geq 20 \\ x, y \geq 0 \end{array}$

3. Solve for the exact coordinates of the point of intersection of the lines in #1.

4. Given that x = 500 when p = 10, and x = 300 when p = 11, express p as a linear function of x. Write your answer in the form: p = mx + b.

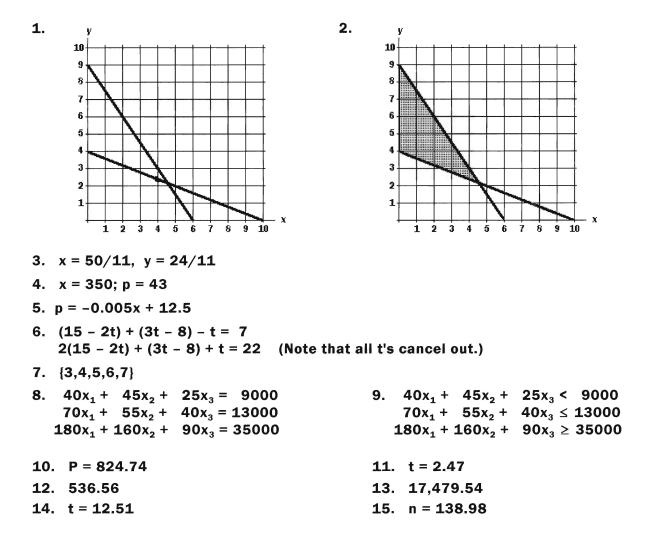
5.	Solve the system of equations:	p = .08x + 15
		p = 99 – .16x

6. Verify that $x_1 = 15 - 2t$, $x_2 = 3t - 8$, and $x_3 = t$ is a solution to the following system of equations for any value of t:

 $x_1 + x_2 - x_3 = 7$ $2x_1 + x_2 + x_3 = 22$

7. If the solutions to the equations in #6 must be whole numbers (nonnegative integers), find all possible values of t.

Items 8 and 9 refer to the following facts about a company that builds bookcases, tables, and chairs:


Each bookcase requires \$40 of material and \$70 of labor, each table \$45 of material and \$55 of labor, and each chair \$25 of material and \$40 of labor. Each bookcase sells for \$180, each table for \$160, and each chair for \$90.

Let x_1 be the number of bookcases, x_2 the number of tables, and x_3 the number of chairs.

- 8. Give the system of equations corresponding to a situation in which the company uses exactly \$9000 worth of material, \$13000 worth of labor, and gets \$35000 in sales. Do not solve the system of equations.
- 9. Give the system of inequalities corresponding to a situation in which the company uses less than \$9000 worth of material, no more than \$13000 worth of labor, and gets at least \$35000 in sales. Do not solve the system of inequalities.

Items 10 through 15 will require the use of a scientific calculator. Give answers correct to two decimal places.

- 10. Solve the equation: A = P(1+rt) for P, given that A = 1000, r = .085, and t = 2.5
- 11. Solve the equation: A = P(1+rt) for t, given that A = 800, r = .135, and P = 600
- 12. Perform the calculation: 378.49 $\left(1+\frac{r}{m}\right)^{mt}$, where m = 12, r = 0.07, and t = 5.
- 13. Perform the calculation: 231.75 $\frac{(1+p)^n 1}{p}$, where p = 0.0075 and n = 60.
- 14. Solve the equation: 500 $e^{.07t}$ = 1200, for t.
- 15. Solve the equation: $1.005^{n} = 2$, for n.

Answers