

7.4.1 Dire	ct Memory Access (I	OMA)
WHILE More – in	put AND NOT Error	
ADD 1 TO By	te-count	
IF Byte-count EXIT	t > Total-bytes-to-be-transferred	d THEN
ENDIF		
Place byte in	destination buffer	
Raise Byte-re	adv signal	
Initialize time		
	cknowledged Timeout OD Erro	r
ENDWHILE	cknowledged, filleout, OK Ello	
	land (Colored Charges Colored	10

7 4 1	Diaid D	ick	C Driv	100	
/.O.I	Rigia D	ISK	$\nabla D \Gamma$	ves	
	0				
	dodestroti at et otel		DELIGER ITY AND MA	INTERAINCE.	
	Formathed Capacity, MB	1340	MITTE	300.000 hours	
	Integrated Controller	5051	Start/Stop Cycles	50,000	
	Encoding Method	FILL 1.7	Design Life	5 years (minimum)	
	Buffer Size	646	Data Errore	A set setting and	
	Paders	2	(ana seconestase)	au ber in ten inen	
	Tracka per Surface	3.100	PERFORMANCE		
	Track Density	5,080 tpi	Seek times		
	Pacording Density	00.2 Kitaji	Track to Track	4.5 mp	
	Bytes per Dlock	512	Average	14 ma	
	Becture per Track	132	Average Latercy	6.72 ma	
	PHYSICAL:	12.4	(al-0.20%)	A ANA INC.	
	Lanath	100mm	Controller Overhead	+200 +540	
	Width	20mm	Data Transfer Pater		
	Vaught	170g	To/from Media	6.0 MB/Sec	
	Temperature (C*)		To/from Heat	11.1 MB/Sec	
	Operating	5°C to 55°C	Start Time		
	Rein-operating storage	4010107110	in - train sound!	1972	
	Acoustic Noise	ShellA, ide			
	POWER DEC	NUMBER			
	Made	+SVD0	Power		
	Seitue	+015 - 10%	NOOMW		
	100	130mA	Month W		
	Randby	sonA	250mW		
	Desc	6nA	30mW		
	- steep				

Problem 18 page 382	
 18. Suppose a disk drive has the following characteristics: 4 surfaces 1024 tracks per surface 128 sectors per track 512 bytes/sector Track-to-track seek time of 5 milliseconds Rotational speed of 5000 RPM. a. What is the capacity of the drive? b. What is the access time? 	
CS 2401 Comp. Org. & Input/Output and Storage Systems Assembly Chapter 7	38

Problem 19 page 382	
riobient i's page 662	
 19. Suppose a disk drive has the following characteristics: 5 surfaces 1024 tracks per surface 256 sectors per track 512 bytes/sector Track-to-track seek time of 8 milliseconds 	
Rotational speed of 7500 RPM.	
 a. What is the capacity of the drive? b. What is the access time? 	
c. Is this disk faster than the one described in question 18? Explain.	
CS 2401 Comp. Org. & Input/Output and Storage Systems Assembly Chapter 7	39

7.6.2 Flexible (Floppy) Disks	
A directory entry says that a file we want to read starts at sector 121 in the FAT fragment shown below.	-
FAT Index - 120 121 122 123 124 125 126 127 FAT 97 124 <eof> 1258 126 <bad> 122 577 Contents 97 124 <eof> 1258 126 <bad> 122 577</bad></eof></bad></eof>	
 Sectors 121, 124, 126, and 122 are read. After each sector is read, its FAT entry is to find the next sector occupied by the file. At the FAT entry for sector 122, we find the end-of-file marker <eof>.</eof> 	
CS 2401 Comp. Org. & Input/Output and Storage Systems 43 Assembly Chapter 7	-

	12 bytes	4 bytes		4 bytes		
Mode 0	Synch	Header		All Zeros		
	12 bytes	4 bytes	2048 bytes	4 bytes	8 bytes	278 bytes
Mode 1	Synch	Header	User Data	CRC	All Zeros	Reed- Soloman
			12254-62223470	Error-D	letection an	d Correction
	12 bytes	4 bytes		2336 bytes		
Mode 2	Synch	Header		User Data		
		J1	· · · · · · · · · · · · · · · · · · ·			
1	t huto 1	wte t by	e thute			

/	
	DVDs can be thought of as quad-density CDs.
	 Varieties include single sided, single layer, single sided double layer, double sided double layer, and double sided double layer.
	Where a CD-ROM can hold at most 650MB of data, DVDs can hold as much as 17GB.
	One of the reasons for this is that DVD employs a laser that has a shorter wavelength than the CD's laser.
	This allows pits and land to be closer together and the spiral track to be wound tighter.
	It is possible that someday DVDs will make CDs obsolete.

~				
Su	immary	ot RAI	D Capa	bilities
			•	
RAID	Description	Reliability	Throughput	Pro and con
0	Block interleave data striping	Worse than sincle disk	Very good	Least cost, no protection
1	Data millrored on second identical set	Excellent	Better than single disk on reads, worse on writes	Excellent protection, high cost
2	Rit interleave data striping with Hamming code	Good	Very good	Good performance, high cost, not used in practice
3	Bit interleave data striping with party disk	Good	Very good	Good performance, reasonable cost
4	Block interleave data striping with one parity disk	Very good	Much worse on writes as single disk, very good on reads	Reasonable cost, poor performance, not used in practice
5	Block interleave data striping with distributed party	Very good	On writes not as good as single disk, very good on reads	Good performance, reasonable cost
6	Elock interleave data striping with dual error protection	Exoclient	On writes much worse than single disk, very good on reads.	Cood performance, reasonable cost, complex to implement
10	Mirrored disk striping	Excellent	Better than single disk on reads, not as good as single disk on writes	Good performance, high cost, excellent protection
U۲	Block interleave data striping with dual parity disks	Excellent	Better than single disk on reads, nct as good as single disk on writes	Good performance, reasonable cost, excellent protection

).	What would be the average disk access time on your system if you decide to use RAID-1?
	In RAID-1, it takes twice as long to do a write as a read, because data has to be written twice. However, access time for a read is half of what we would expect from a system not using RAID-1, assuming that the disk arms are 180 degrees offset from one another.
	Average Access Time = 0.4 * (15 ms / 2) + 0.6 * (15 ms * 2) = 21 ms.

Problem 30 Page 383	
 Which configuration has a better cost-justification, RAID-1 or RAID-5? Explain your answer. 	
Both RAID solutions will offer database response time comparable to what is currently offered by the system. The RAID-1 system will require 2*N disks while the 4-disk RAID-5 solution will require 133% of the number of disks. That is, RAID-1 will cost \$24,000 and RAID-5 will cost \$16,000. The cost of the disks isn't the big issue here, however. What matters most is system availability. With 8 disks each with a MTTF of 20,000 hours, we can expect a failure of at least two of the disks to fail within 20,000/8 hours, or 2,500 hours. So at least twice a year, we could expect a disk failure that will last 4 hours. If RAID-1 is used, the system will continue to function, while the RAID-5 system will be down, costing roughly \$4,800 in lost revenue during each outage. (No data would be lost, though!)	
Cost of RAID-1: \$24,000; Cost of RAID-5: \$16,000 + \$9,600 revenue loss = \$25,600.	
The RAID-1 is therefore more economical. Note: We have not included loss of goodwill and permanent business loss in the RAID-5 figure. This tilts the balance greatly in favor of the RAID-1 solution.	
CS 2401 Comp. Org. & Input/Output and Storage Systems 80 Assembly Chapter 7	

Chapter 7 Conclusion
 Magnetic disk is the principal form of durable storage. Disk performance metrics include seek time, rotational delay, and reliability estimates. Optical disks provide long-term storage for large amounts of data, although access is slow. Magnetic tape is also an archival medium. Recording methods are track-based, serpentine, and helical scan.
CS 2401 Comp. Org. & Input/Output and Storage Systems 92 Assembly Chapter 7

