The Definite Integral and The Fundamental Theorem of Calculus

For special case $f(x) \ge 0$, $\int_a^b f(x) dx =$ the **area** under the graph of f from a to b

The Fundamental Theorem of Calculus

If
$$f$$
 is continuous of $[a, b]$ and F is any antiderivative of f , then
$$\int_a^b f(x) \, dx = F(b) - F(a)$$

Properties of The Integral

$$\int_a^b c \, dx = c(b-a) \text{ where } c \text{ is any constant}$$

$$\int_a^b c \, f(x) \, dx = c \int_a^b f(x) \, dx \text{ where } c \text{ is any constant}$$

$$\int_a^b [f(x) \pm g(x)] \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx$$

$$\int_a^a f(x) \, dx = 0$$

$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx \text{ if } a > b$$

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$