WOW 211 and 212. There is a simple connected graph G with 25 vertices, the set A of vertices of G of minimal degree has $|N(A)|=|N(A)-A|=16$, the lower median of the degree sequence of the complementary graph \bar{G} is 8 , but G does not have a Hamiltonian path.
Solution by Richard Stong, CCR, La Jolla. Let G be the graph with vertices $V(G)=\left\{v_{0,0}, v_{0,1}, \ldots, v_{3,3}, w_{0}, w_{1}, w_{2}, x_{1}, \ldots, x_{6}\right\}$ such that
(i) The $v_{i, j}$ form a complete graph.
(ii) Each w_{i} is adjacent to only $v_{i, j}, 0 \leq j \leq 3$.
(iii) Each x_{k} is adjacent to only $v_{3, j}, 0 \leq j \leq 3$.

Clearly G is connected and simple. The vertices $v_{i, j}$ have degree 16 if $i<$ 3 and 21 if $i=3$. The vertices w_{i} and x_{k} all have degree 4 . Therefore $A=$ $\left\{w_{0}, w_{1}, w_{2}, x_{1}, \ldots, x_{m}\right\}$ is the set of vertices of minimal degree and we have $N(A)=$ $\left\{v_{0,0}, v_{0,1}, \ldots, v_{3,3}\right\}$. Hence $|N(A)|=|N(A)-A|=16$, as claimed. The degree sequence of G is $4^{9} 16^{12} 21^{4}$ hence the degree sequence of \bar{G} is $3^{4} 8^{12} 20^{9}$ and the median of this degree sequence is 8 . To see that G does not have a Hamiltonian path simply note that removing the 4 vertices $v_{3, j}$ leaves 7 components, the six isolated vertices x_{k} and one large component.

