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Abstract

In this paper we present some elementary results on the matching
number of bipartite graphs. Most of the results are lower bounds on
the matching number of bipartite graphs in terms of various degrees
of the graph and others involve various subsets of vertices of the
graph. For example, we prove that for any subset S of vertices of a
bipartite graph, the matching number is at least the minimum of the
smallest degree of a vertex appearing in S and the cardinality of S.

1 Introduction

In this paper all graphs are assumed to be simple and finite. The notation
G, V(G) and E(G) is used to denote a graph, its vertex set and edge set.
A graph @ is a bipartite graph if its vertices can be partitioned into two
disjoint sets X and Y such that X UY = V(G) and every edge of the
graph is of the form (z,y) with z € X and y € Y. An X,Y-bigraph is
a bipartite graph with partition X and Y. A subset of the edges of G is
called a matching if no two edges have a common endpoint. The size of a
largest matching is the matching number of a graph G, which we denote

by u(G).
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Most of the lower bounds on the matching number of bipartite graphs
presented in this paper were conjectured by the first author’s conjecture-
making program, Graffiti.pc (see [3] for program description). This pro-
gram was inspired by Siemion Fajtlowicz’s conjecture-making program,
Graffiti (see [5] for description). Since a majority of the results involve
various degree invariants of the graph, we devote a short section to those
definitions and notation. All other necessary definitions will be presented
before referenced.

2 Definitions on Degrees of a Graph

The degree of a vertex v of G, denoted by deg(v), is the number of
vertices adjacent to v. By the ordered degree sequence of a graph we
mean the degree sequence listed in non-decreasing order. We denote the
maximum degree of G by A(G), the minimum degree of G by §(G),
the second largest degree of the degree sequence of G by X(G), and
the second smallest degree of the degree sequence of G by o(G);
the latter is the second entry of the ordered degree sequence. Note that the
ordered degree sequence of G can be listed as §(G), o(G), ..., 2(G), A(G).

The median of the degree sequence is the (k + 1) entry of the
ordered degree sequence in the case that the ordered degree sequence has
2k + 1 terms; otherwise, in case G has 2k vertices, it is the average of the
kthand (k 4 1) entries of the ordered degree sequence. The number of
distinct degrees of G, denoted dd(G), is the number of distinct integers
occurring in the degree sequence. Let S be a subset of the vertices of G. The
neighborhood of S, denoted N (S), is the set of vertices that are adjacent
to some vertex of S. Lastly, we put A(S) = maximum{deg(v)|v € S} and
§(S) = minimum{deg(v)|v € S}.

3 Applications of Berge’s Theorem

The organization of this paper was partly motivated by the classic results
that seemed most useful in proving particular conjectures. As such, we first
state the classic result of C. Berge and the needed terminology.

Let M be a matching of G. An M-alternating path is a path whose
edges alternate between edges in M and edges not in M. A vertex v of G
is saturated by M if it is the endpoint of an edge of M; otherwise, vertex
v is unsaturated by M. An M-augmenting path is an M-alternating
path that begins and ends with M-unsaturated vertices.

Theorem 1. (Berge [1]) A matching M in a graph G is a mazimum match-
ing if and only if G has no M -augmenting path.



Our first theorem was inspired by three of Graffiti.pc’s conjectures
(numbered 114, 115 and 116 in [4]); those conjectures now follow from
our theorem.

Theorem 2. Let G be a bipartite graph. Then
w(G) > mazimum{minimum{|S|,5(S)} : S C V(G)}.

Proof. Let S C V(G); recall that §(S) = minimum{deg(v) : v € S}. Let
M be the set of edges of a maximum matching. We will assume that the
set S has no isolated vertices since otherwise §(S) = 0. If u(G) = 1,
then G is a star and any subset on more than one vertex will contain a
vertex of degree one, in which case the result clearly follows. Thus, we can
assume p(G) > 2. By way of contradiction suppose that p(G) < |S| and
w(G@) < 0(S) for some S C V(G). Since G is bipartite and each vertex
of S is assumed to have degree at least u(G) + 1, each vertex of S has an
unsaturated neighbor. From this we see that the vertices in S are saturated
by M, otherwise there is an unsaturated vertex of S adjacent to an another
unsaturated vertex, contradicting that M is maximum. Since all vertices
of S are saturated, the assumption that S has at least u(G) + 1 vertices
implies that there exists an edge (u, v) of M with both endpoints in S. By
assumption, the degrees of the endpoints u and v are each at least u(G)+1.
Since G is bipartite, each of the endpoints has a neighbor not saturated by
M that yield an M-augmenting path. Hence, by Berge’s Theorem we have
reached a contradiction to the assumption that M is maximum. |

From Theorem 2 with S = V(G), it follows that the matching number of
a bipartite graph is at least its minimum degree; for S = V(G) — {v} where
v is a vertex of minimum degree, it follows that the matching number of a
bipartite graph is at least o(G) (the second smallest degree of the ordered
degree sequence); the latter, was conjectured by Graffiti.pc (numbered 118
in [4].) If one continues to construct such a set S until, |S| = 2L, when
n = |[V(G)] is odd, then it follows that the matching number is at least
the median of the degree sequence. In Theorem 3, we prove that if G is a
connected X, Y-bigraph such that u(G) < |X| < |Y], then u(G) is at least
one plus the median of the ordered degree sequence.

Lemma 1. Let G be a connected X,Y bigraph such that |X| < |Y|. If
w(@) < |X|, then there are at most u(G) vertices of degree at least u(G).

Proof. Let M be a maximum matching of G and let V(M) be the set of
vertices incident to edges of M. Assume p(G) < |X|. Let S = {v : deg(v) >
u(G)}. By way of contradiction, assume |S| > u(G) + 1. Observe that by
the assumptions u(G) < | X| < |V, it follows that



(*)  there exists at least one M-unsaturated vertex in X and at least one
M-unsaturated vertex in Y.

Next, we show that every vertex in S is M-saturated. Suppose x € SNX
and that x is not saturated. Since the degree of an M-unsaturated vertex is
at most ;1(G) and = € S, it follows that deg(z) = p(G). This implies that
is adjacent to each vertex of V(M)NY. By (*) there is an M-unsaturated
vertex y in Y. Since the graph is assumed to be connected, y is adjacent to
at least one M-saturated vertex z’. Vertex z’ is incident to an edge (2',y’)
of the matching. This results in an M-augmenting path x —y — 2’ — y.
The case that z € SNY, is argued similarly.

Since the vertices of S are M-saturated and we have assumed that |S| >
1(G) + 1, there exists an edge (x,y) of the matching whose endpoints have
degree at least u(G). Note that x and y cannot both have M-unsaturated
neighbors otherwise G' has an M-augmenting path.

In the case that one of the endpoints of the edge (z,y) has an M-
unsaturated neighbor, first assume that vertex x € X has unsaturated
neighbor y’. By observation (*) we have M-unsaturated vertex z’ in X.
Since the graph is connected and M is maximum, ' must have at least
one saturated neighbor v in Y. Vertex v is incident to an edge (v, u) of the
matching. Since y has no M-unsaturated neighbor and the degree of y is
at least u(G), y is adjacent to each vertex of V(M) N X. This results in an
M-augmenting path ¢ — 2 —y —u—v — a’. The case that € Y is argued
similarly.

Lastly, in the case that neither of the endpoints of the edge (x,y) has an
M-unsaturated neighbor, note that N(X)UN(Y) = V(M). By observation
(*) we have M-unsaturated vertices ’ € X and ¥’ € Y. Since G is con-
nected and M is maximum, vertex z’ is adjacent to at least one saturated
vertex v. Vertex v is incident to an edge (v,u) of the matching. Similarly,
y' is adjacent to at least one saturated vertex s. If s is the same as u, then
clearly G has an M-augmenting path. So suppose s # u. Vertex s is inci-
dent to an edge (s,p) of the matching. This results in an M-augmenting
pathe —v—u—y—z—p—s—1v. O

The following two results were conjectured by Grafliti.pc and numbered
124 and 125 in [4].

Theorem 3. Let G be a connected X, Y -bigraph such that | X| < |Y|. Then
w(G) > minimum{1 + median(G), | X|}.

Proof. Let |V(G)| = n and assume p(G) < | X|. Then clearly n > 2u(G) +
2. Let us consider the degrees of G in nondecreasing order

di <. < d,u(G) < d,u(G)Jrl <..< dnf,u(G) < dnf,u(G)Jrl <. <d,.



Figure 1: Counterexample to Conjecture 1.

Observe that since n > 2u(G) + 2, the median degree is not determined
from the u(G) vertices with indices greater than n—p(G); thus by Lemma 1,
the median will be at most p(G) —1 or equivalently u(G) > 1+ median(G).

O

Theorem 4. Let G be a connected X, Y -bigraph such that | X| < |Y|. Then
w(G) > minimum{1l + k, | X|},

where k is the (n—|X|+1)th degree of the degree sequence in nondecreasing
order.

Proof. Let |V(G)| = n and assume u(G) < |X|. Let [ be the number of
vertices which have degree at least p(G), then by Lemma 1, [ < p(G) <
|X| — 1. Let us consider the degrees of G in nondecreasing order

di <. <dye) <. Sdpoix) S dnoix141 S dn—ixj42 < - Sy

Then, the |X| — 1 vertices whose indices are greater than or equal to
n—|X|+2 may have degree at least y(G), but the one with n— | X|+1 will
not. Thus, k will be at most p(G) — 1 or equivalently u(G) > 1+ k. O

The median of the degree sequence was not the only measure of central
tendency to appear in conjectures; however, it turned out that if one will
replace the median of the degree sequence with the average of degrees in
the statement of Theorem 3, the statement is false.

Conjecture 1. (Graffiti.pc 123 [4]) Let G be a connected X,Y -bigraph
such that | X| <|Y|. Then

w(G) > minimum{| (1 + average of degrees)|, | X|}.

The graph in Figure 1 is a counterexample to Conjecture 1; the matching
number is five, |X| = 6 and the floor of one more than the average of
degrees is also 6. This counterexample is a member of the following family
of counterexamples to Conjecture 1.



Let » > k > 3 and H be a complete bipartite graph Ky,4+1 ,. Let y be
a vertex in the partite set of cardinality kr + 1 of H. A new graph G is
constructed by adding two vertices z; and x2 to H and adding two edges
(x1,y) and (x2,y) to H. Let M be a maximum matching of G. Since 1 or
Z2 is unsaturated by M, the matching number of G is r 4+ 1. On the other
hand, the average degree of G is

(kr+1)r+2+rkr+(r+2)  2kr®+2r+4

(k+1)r+3  (k+Dr+3°
Now
2kr? +2r +4 (k—1)r?—r+4
— 1 >r+2
s i Tt e M2

Our last result of this section also originated as a conjecure of Graffiti.pc
(number 119 in [4]).

Theorem 5. Let G be a connected X, Y -bigraph such that | X| < |Y|. Then
w(G) > minimum{20(G), | X|}.

Proof. Let M be a maximum matching of G. By way of contradiction
assume that u(G) = |M| < |X| and that u(G) = |M| < 20(G). The
assumptions that u(G) < |X| < |Y| imply that there exists a vertex z in
X that is unsaturated by M and a vertex y in Y that is unsaturated by
M. Observe that since M is maximum, all neighbors of # and y are among
the vertices of M.

One of the vertices = or y is of degree less than 1u(G), for otherwise
2 and y are incident to a common edge of M, which by Berge’s Theorem
contradicts that M is maximum. Suppose that deg(z) < 1u(G). In this
case, by the assumption that u(G) = |M| < 20(G) we see that every vertex,
other than z, is of degree at least $4(G)+1. Since the graph is assumed to
be connected, x must be adjacent to a vertex that is incident to an edge of
M. Let y' be such a vertex, and let 2’ be its matched vertex in M. Clearly,
2’ is in X and ¢ is in Y. Further, observe that all neighbors of x' are
among the vertices incident to edges of M, otherwise path x —y' — 2’ — v
determines an M-augmenting path, where v is a neighbor of z’ not in M.
Since the degrees of 2’ and y are at least 2u(G) + 1, they are incident to
a common edge of M, say (u,v) with w in ¥ and v in X. In this case,
the path z — 3y — 2’ — u — v — y is an M-augmenting path providing a
contradiction to Berge’s Theorem. The case that y is the vertex of degree
less than $4u(G) is argued similarly. O



4 Applications of Hall’s Theorem

This short section involves two of Graffiti.pc’s conjectures (112 and 113
in [4]) that are direct applications of the classic result known as Hall’s
Theorem.

A perfect matching in a graph is one that saturates all vertices of the
graph. A matching M in an X, Y-bigraph is a complete matching of X
into Y if every vertex of X is saturated by M.

Theorem 6. (Hall [6]) If G is an X,Y -bigraph, then G has a complete
matching of X into Y if and only if IN(S)| > | S| for all subsets S of X.

Proposition 1. Let G be a nonempty bipartite graph on at least two ver-
tices. Let M be the set of vertices of maximum degree of G. Then

w(G) = [|M]/2].

Proof. Let G be an X,Y-bigraph with maximum degree A(G). Let M
be the set of vertices of maximum degree of G. Let X* = M N X and
let Y* = M NY. Clearly, M| = |X*| +|Y*|. Let S C X*. Since the
vertices of N(S) are incident with A(G) - |S| edges and at most maximum
A(G) - [N(S)| edges, |N(S)| > |S]. Thus, Hall’s Theorem (applied to
the subgraph induced by X* U N(X*)) implies that there is a matching
that saturates the vertices of X*. A similar argument yields that there
is a matching that saturates the vertices of Y*. Thus, u(G) > |X*|, and
#(G) > |Y*| from which the result follows. O

A standard exercise for applying Hall’s theorem is to show that a degree-
regular bipartite graph has a perfect matching; this exercise follows from
Proposition 1. Graffiti.pc also conjectured that for connected graphs the
matching number is at least half of the number of distinct degrees (see 113
in [4]); Craig Larson communicated a proof to the authors. Lastly, we note
that for connected bipartite graphs the proof of the latter relation is similar
to the application of Hall’s Theorem given in the proof of Proposition 1.

5 On the Ratio of Edges to Degree

Let S be a subset of the vertices of G. The neighborhood of S, denoted
N(S) is the set of vertices that are adjacent to some vertex of S. The set
N(S) — S is the set difference of the sets N(S) and S, which is the set of
neighbors of vertices of S that are not members of S.

Graffiti.pc rediscovered the exercise that for any bipartite graph, u(G) >
LE(G)]

IN(ER which we state here as Proposition 2 and is found for instance in



[8]. Graffiti.pc also conjectured (see number 118 in [4]) that the matching
number of a connected bipartite graph is at least the ratio of the number
of edges of G with exactly one endpoint that is a minimum degree vertex
to the minimum degree.

Proposition 2. ([8], p. 121) Let G be a bipartite graph. Then

=
8
Vv

~AG)

Theorem 7. Let G be a connected bipartite graph on at least 2 vertices.
Let A be the set of vertices of minimum degree in G.Then

N(4)— 4]

wG) > 5C)

Proof. Let G be a connected X,Y-bigraph on at least two vertices with
d = 0(G). Let A be the set of vertices of minimum degree in G. Let
X* C AN X such that N(X*)N A = () (that is X* consists of vertices of
X that are of minimum degree but whose neighbors are not of minimum
degree); similarly, we let Y* C ANY such that N(Y*) N A = 0.

Let M be a largest matching from X* to N(X*). Let V(M) be the
vertices of the matching. We next show that

N(V(M)NX) = N(X*). (1)

Since (V(M)NX) C X*, clearly N(V(M)NX) C N(X*). On the other
hand, suppose that there is a vertex v in N(X™*) that is not in N(V (M)NX).
This implies that v is adjacent to a vertex w in X* but not adjacent to
any vertex in (V(M) N X), which contradicts our assumption that M is
maximum.

By (1) we see that

(N _ INVIM)n X)| _ 8[V(M) 0 X])

5 0 - 0

= |M]. (2)

Let N be a largest matching from Y* to N(Y*). One can similarly
argue that
(NI
4]

Since X* and N(Y™*) are disjoint sets, and the sets Y* and N(X*) are
also disjoint, it is easily seen that M U N is a matching of size |M U N| =

<|NJ. (3)



|M| + |N|. Thus, by (2) and (3) we see that

[N+ [N
4]

[N(X*) UN(Y™)|
4]

[N(X*UY™)|

4]
Let A* = X*UY™*, and M* = M UN. By construction N(A*) contains
no vertices of minimum degree and thus with this notation and the above
we have the following,

MU N|

Y

o > AL (@)

We will extend the set A* to A by considering the neighborhoods of
vertices of A — (X* UY™) one at a time and in the process demonstrate
that there is a matching whose size is at least |[N(A) — A|/J. Note that
the set A is the union of four disjoint sets, Y*, X* (AN X) — X* and
(ANY)—-Y™.

Let v be a vertex in the set (AN X) — X*. If N(v) is contained in
ANY, then adding the vertex v to set A* contributes at most ¢ vertices (of
minimum degree) to N(A*) which results in no net change in the quantity
|N(A*) — A|. Similarly, adding to A* a vertex v of the set (ANY) —Y*
such that N(v) is contained in A N X results in no change to the quantity
|N(A*) — Al. Thus, we assume that all vertices of minimum degree whose
neighborhoods are entirely contained in A are now members of A* and that
the relation in (4) is preserved.

Let v be a vertex of (ANX)—X* whose neighborhood intersects both A
and its complement. If the intersection of N(v) with the complement of A
is contained in N(A*) then adding vertex v to A* results in no net change
in |N(A*) — A] since those neighbors would have already been counted.
On the other hand if the intersection of N(v) with the complement of A is
not entirely contained in N(A*), say u is such a neighbor of vertex v, then
adding edge (u,v) to M™* increases its size by one, and adding vertex v to
A* results in an increase in |[N(A*) — A| by at most §, which increases the
ratio |[N(A*) — A|/d by at most one. O

6 Closing Comments

Once Graffiti.pc was queried for lower bounds on the matching number
of connected bipartite graphs, it responded with 19 conjectures. The two
conjectures that remain open are listed next.



Conjecture 2. (Graffiti.pc 129 [4]) Let G be a connected X, Y -bigraph such
that | X| < |Y|. Let A(Y) be the maximum degree of Y. If A(Y) # 1,

wG) = %

Conjecture 3. (Graffiti.pc 130 [4]) Let G be a connected X,Y -bigraph on
at least three vertices such that | X| < |Y|. Let ¥ be the 2"¢ largest degree
of the degree sequence in nondecreasing order. If ¥ # 1,

X

wG) = s—7
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