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Abstract. We show that if the radius of a simple, connected graph equals its indepen-
dence number, then the graph contains a Hamiltonian path. This result was conjectured
by the computer program Graffiti.pc, using a new conjecture-generating strategy called
Sophie. We also mention several other sufficient conditions for Hamiltonian paths that
were conjectured by Graffiti.pc, but which are currently open, so far as we know.

Introduction and Key Definitions

We limit our discussion to graphs that are simple, connected and finite of order n.
Although we often identify a graph G with its set of vertices, in cases where we need
to be explicit we write V (G). We let α = α(G) denote the independence number of G;
this is the maximum order of an induced discrete subgraph of G. The eccentricity of a
vertex v of G is the maximum of the distances from v to the other vertices of G. The
minimum eccentricity taken over all vertices of G is called the radius of G and is denoted
by r = r(G). The path covering number of G is denoted by ρ = ρ(G) and is the minimum
number of vertex-disjoint paths needed to cover the vertices of G (e.g. when ρ = 1, G
contains a Hamiltonian path). We define the path number of G, denoted by p = p(G),
as the maximum order of an induced path in the graph. One can make an analogous
definition for the bipartite number of G, denoted by b = b(G). Other more specialized
definitions will be introduced immediately prior to their first appearance. Standard graph
theoretical terms not defined in this paper can be found in [14].

In a classical 1986 paper by P. Erdös, M. Saks, and V. Sós [8], using a proof credited to
F. Chung, it is shown that every graph of radius r has an induced path of order at least
2r − 1. We state this result as Theorem 1, which is sometimes called the Induced Path
Theorem [11].

Theorem 1. [8] Let G be a graph. Then

p ≥ 2r − 1.

Two immediate corollaries of Theorem 1 are summarized in the following Theorem
2. Only the second inequality requires a proof; there are various other proofs of this
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inequality besides the one given here. The best known of these inequalities is the first
one: the independence number of a graph is at least as large as its radius. This result
was proven independently at roughly the same time as Theorem 1 by S. Fajtlowicz and
B. Waller [10], motivated as an early conjecture of the computer program Graffiti [9], as
well as by O. Favaron, M. Mahéo and J-F. Saclé [12]. Neither of the these independent
proofs is similar to Chung’s proof of the Induced Path Theorem.

Theorem 2. Let G be a graph. Then α ≥ r and b ≥ 2r.

Proof. The first inequality is an obvious consequence of Theorem 1. To show b ≥ 2r,
suppose G is a counterexample. Let P be an induced path of order at least 2r − 1. Now
P must have order exactly 2r− 1 and b = 2r− 1, or we are finished. Color the vertices of
P red and green. So the endpoints of P have the same color. But each vertex v outside
of P must be adjacent to both a red and green vertex of P , or b ≥ 2r and G is not a
counterexample. Thus v must be adjacent to an interior vertex of P . But this implies the
radius of G is at most r − 1, again a contradiction. �

Although it is easy to find graphs (other than cliques) for which these two inequalities
are best possible, the problem of characterizing the case of equality for each lower bound
has apparently remained unresolved. Of particular interest has been characterizing those
graphs where α = r (see [11], [12]). The main goal of this paper is therefore to prove the
following Theorem 3, which sheds some light on the structure of these extremal graphs as
well as supplying a new sufficient condition for a graph to contain a Hamiltonian path.
We defer the proof of this theorem to the next section.

Theorem 3. (Main Theorem) Let G be a graph such that α = r. Then G contains a
Hamiltonian path.

One interesting aspect of this theorem is that it applies to various families of graphs,
such as even paths and cycles, for which many of the classical sufficient conditions for
Hamiltonian paths do not apply. Let us discuss the genesis of this theorem. Graffiti,
a computer program that makes conjectures, was written by S. Fajtlowicz and dates
from the mid-1980’s. Graffiti.pc, a program that makes graph-theoretical conjectures
utilizing conjecture-making strategies similar to those found in Graffiti, was written by
E. DeLaViña. The operation of Graffiti.pc and its similarities to Graffiti are described in
[2] and [3]; its conjectures can be found in [5]. A numbered, annotated listing of several
hundred of Graffiti’s conjectures can be found in [9]. Both Graffiti and Graffiti.pc have
correctly conjectured a number of new bounds for several well studied graph invariants;
bibliographical information on resulting papers can be found in [4].

Graffiti.pc employs two main strategies for generating conjectures. The first of these
is known as the “Dalmatian heuristic” (due to Fajtlowicz) and generates necessary con-
ditions for a particular class of graphs P , as chosen by the user (frequently, this class is
merely all simple, connected graphs). Dalmatian conjectures are of the form



If a graph belongs to class P , then “fixed expression ≥ expression 2”

where the expressions on the left and right are composed of graph invariants and constants
combined by algebraic operations. The fixed expression on the left is also chosen by the
user, and may consist of just a single graph invariant. At present, Graffiti.pc can compute
about 500 invariants and 25 operators. Graffiti.pc generates expressions of 35 various
types (as determined by the arity of the operators in the expression). Expressions may
contain several terms. Different expressions are generated by varying terms and operators
over the invariant set and available operators of the appropriate arity, respectively.

Recently, the authors have been experimenting with a new strategy for generating
conjectures, called the “Sophie heuristic” (due to DeLaViña and Waller). Graffiti.pc’s
Sophie heuristic generates sufficient conditions for a particular class of graphs P , as chosen
by the user. Sophie conjectures are of the form

If “expression 1 ≥ expression 2” for a graph, then the graph belongs to class P .

Sophie generates conjectures by utilizing two databases of graphs and their computed
invariants. The background database comprises about two million small connected graphs
(most generated by B. McKay’s geng program), and the top database is a small subset
of the background database. Let P be a class of graphs. The target set is the collection
of graphs in the top database that belong to class P . The cover set C of a relation
between expressions is the set of graphs in the top database for which the relation is
true. The Sophie heuristic begins by generating pairs of different expressions by varying
terms and operators over the invariant set and available operators of the appropriate arity,
respectively. Then the cover sets of each of three possible relations (utilizing ≤,≥, and
=) between a pair of expressions is determined. If the cover set of a relation is contained
in the target set, then the relation is considered to be the hypothesis of a candidate
conjecture, whose conclusion is that a graph satisfying the hypothesis belongs to class
P . A candidate conjecture is accepted if its cover set includes graphs not included in
any of the cover sets of previously accepted conjectures, and if it is plausible versus the
background database. Sophie’s goal is to generate a “minimal” list of conjectures that
“covers” all graphs in the target set. If this goal is met, then Sophie tries to extend (i.e.
add graphs to) the target set and top database, and continues toward the goal.

As one of our initial test beds for Sophie, we chose the class P of simple, connected
graphs containing a Hamiltonian path. This test resulted in a collection of 34 conjectures,
several of which have now been either proven or refuted. We will mention a few of
our favorite open conjectures from this list in the last section. The full list of Sophie
conjectures is available at [5]. The conjecture that resulted in Theorem 3 was contained
on an early list of Sophie conjectures, but eventually was replaced by the following more
general conjecture.

Conjecture 1. (Graffiti.pc 196) Let G be a graph. If b = 2r, then G contains a Hamil-
tonian path.

This conjecture is a generalization of Theorem 3 because since α ≥ b/2, Theorem 2
implies if α = r, then b = 2r as well. Some time after Sophie generated these conjectures,
we noticed that Theorem 3 is also a corollary of the following open conjecture of Graffiti.



Figure 1. The 7-ciliate C(8, 3)

Conjecture 2. (Graffiti [7]) Let G be a graph. Then

α ≥ r +
ρ − 1

2
.

There exist at least two different generalizations of Theorem 1, provided independently
by Fajtlowicz in ([11], Theorem 2), and G. Bacsó and Z. Tuza in ([1], Theorem 1). The
1988 result of Fajtlowicz plays a key role in the proof of Theorem 3. Fajtlowicz proves this
result in the context of characterizing radius-critical graphs, which are graphs in which
every proper induced connected subgraph has radius strictly less than the parent graph.
Let P (n) and C(n) denote the path on n vertices and the cycle on n vertices, respectively.
Let C(p, q) denote the graph obtained from p disjoint copies of P (q+1) by linking together
one endpoint of each path in a cycle C(p). For 1 ≤ t ≤ r, the graphs C(2t, r − t) have
radius r and are referred to as r-ciliates. Ciliates include the even paths P (2r) and even
cycles C(2r) as the extreme cases t = 1 and t = r (assuming C(2) = P (2)). Figure 1
depicts the 7-ciliate C(8, 3) = C(2 · 4, 7 − 4).

Theorem 4. (Fajtlowicz [11]) Let G be a graph with r ≥ 1. Then G contains an r-ciliate
as an induced subgraph.

Finally, another result of Fajtlowicz (also conjectured by Graffiti) will allow us to some-
what simplify the proof of Theorem 3.

Theorem 5. (Fajtlowicz [9]) Let G be a graph with α = 2. Then G contains a Hamiltonian
path.

Proof of Main Theorem

Theorem 3. Let G be a graph such that α = r. Then G contains a Hamiltonian path.

Proof. The case α = r = 1 is trivial. Thus, Theorem 5 implies we can limit our attention
to the case α = r ≥ 3. (We should note that Fajtlowicz has communicated to us a short,
independent proof of the case α = r = 3.) The structure of r-ciliates and Theorem 4
imply the following Lemma 1. Lemma proofs are given in the next section.

Lemma 1. Let G be a graph with r ≥ 1 such that α = r. Then G contains either P (2r)
or C(2r) as an induced subgraph. Moreover, if we let H denote an induced P (2r) or C(2r)
subgraph, then every vertex of G is either contained in H or is adjacent to H.

Lemma 2. Let G be a graph such that α = r ≥ 1. Then for each vertex v such that
v ∈ V (G) − V (H), v is adjacent to at least two vertices in H.



Figure 2. α = r = 3

Figure 3. α = r = 4

Enumerate the vertices of H as h1, h2, h3, . . . , h2r; clockwise if H is a cycle, and left-
to-right if H is a path. Let hi and hj be two distinct vertices on H. Then we define
δ(hi, hj) = min{|j − i|, 2r − |j − i|}. (Note that if H is a cycle, then δ(hi, hj) is just the
shortest-path distance between hi and hj with respect to H. If H is a path, imagine the
cycle F formed from H by joining h1 and h2r. Then δ(hi, hj) is just the shortest-path
distance between hi and hj with respect to F .) Moreover, we say that hi and hj are
consecutive provided δ(hi, hj) = 1. (Hence, h1 and h2r are consecutive.) Now suppose v
is a vertex such that v ∈ V (G) − V (H). Then we let δ(v) = max{δ(hi, hj) : v is adjacent
to hi, hj}. We have that δ(v) is well-defined by Lemma 2.

In addition to assuming α = r, if we assume r ≥ 5, then we can show the following
Lemma 3.

Lemma 3. Let G be a graph with r ≥ 5 such that α = r. If H = C(2r), then for
each vertex v such that v ∈ V (G) − V (H), v is adjacent to exactly two or exactly three
consecutive vertices in H.

The reader may be curious about the necessity of the condition r ≥ 5 in the statement
of Lemma 3. The graphs in Figures 2 and 3 show that for small values of r, Lemma 3
may not hold. Each graph contains an induced C(2r) subgraph and a vertex v not on
this cycle adjacent to four vertices of the cycle.

Lemma 4. Let G be a graph with 3 ≤ r ≤ 4 such that α = r. Then either:
1) G contains H = C(2r) as an induced subgraph, and for each vertex v such that

v ∈ V (G)−V (H), v is adjacent to exactly two or exactly three consecutive vertices in H,
or

2) G contains P (2r) as an induced subgraph.

The following sequence of lemmas and definitions culminates in Lemma 14, which then
allows us to state an algorithm for constructing a Hamiltonian path in a graph G where
α = r ≥ 3. Lemmas 11, 12, and 13 are analogous to Lemma 3 in the case when H = P (2r).



Figure 4. Lemma 7

Figure 5. Lemma 8

Unlike when r ≥ 5 and H = C(2r), vertices not in H may be adjacent to up to four
vertices in H when H = P (2r). Certain complications arise when r = 3, or when there
exist vertices not in H that are adjacent to the endpoints of H. These complications
necessitate a number of mostly technical lemmas, in particular Lemmas 6 through 9.

Lemma 5. Let G be a graph with r ≥ 3 such that α = r. If H = P (2r) and v is a vertex
such that v ∈ V (G) − V (H), then 1 ≤ δ(v) ≤ 3.

Lemma 6. Let G be a graph with r ≥ 3 such that α = r. Suppose H = P (2r). Let v
be a vertex such that v ∈ V (G) − V (H). Then the neighbors of v in H must be a subset
of four consecutive vertices. Moreover, if r ≥ 4 and δ(v) = 3, the neighbors of v in H
cannot be a subset of {h1, h2r−2, h2r−1, h2r}, {h1, h2, h2r−1, h2r}, or {h1, h2, h3, h2r}.

Lemma 7. Let G be a graph with α = r = 3. Suppose H = P (6). Let U ⊂ V (G)−V (H)
be a collection of vertices such that for every u ∈ U , δ(u) = 3 and the neighbors of u in
H are a subset of {h1, h2, h5, h6}. Then U must induce a clique in G, and each vertex
u ∈ U must be adjacent to each of the vertices {h1, h2, h5, h6}. Moreover, if there exists a
vertex v ∈ V (G)− V (H) adjacent to h6 such that the neighbors of v in H are a subset of
{h1, h2, h6}, then v is adjacent to each vertex of U . (See Figure 4.)

Lemma 8. Let G be a graph with α = r = 3. Suppose H = P (6). Let U ⊂ V (G)−V (H)
be a collection of vertices such that for every u ∈ U , δ(u) = 3 and the neighbors of u in
H are a subset of {h1, h4, h5, h6}. Then U must induce a clique in G, and each vertex
u ∈ U must be adjacent to exactly the set {h1, h4, h5} in H. Moreover, there exists a
vertex v ∈ V (G) − V (H) adjacent to exactly the set {h1, h5, h6} in H, and each such
vertex v is adjacent to each vertex of U . (See Figure 5.)



Figure 6. Lemma 9

Figure 7. Lemma 10.1)

Lemma 9. Let G be a graph with α = r = 3. Suppose H = P (6). Let U ⊂ V (G)−V (H)
be a collection of vertices such that for every u ∈ U , δ(u) = 3 and the neighbors of u in
H are a subset of {h1, h2, h3, h6}. Then U must induce a clique in G, and each vertex
u ∈ U must be adjacent to exactly the set {h2, h3, h6} in H. Moreover, there exists a
vertex v ∈ V (G) − V (H) adjacent to exactly the set {h1, h2, h6} in H, and each such
vertex v is adjacent to each vertex of U . (See Figure 6.)

Lemma 10. Let G be a graph with r ≥ 3 such that α = r. Assume H = P (2r). Suppose
U is a collection of vertices such that U ⊂ V (G) − V (H) and k = min{j : u ∈ U and
u is adjacent to hj}. Moreover, suppose for every u ∈ U that u is adjacent to hk, and
δ(v) = 3 for some v ∈ U . Then:

1) If 2 ≤ k ≤ 2r−4, then there exists a vertex z ∈ V (G)−V (H) such that z is adjacent
to both h1 and h2r. Furthermore, z is adjacent to only these two vertices in H, and z is
not adjacent to any vertex u ∈ U . (See Figure 7.)

2) If k = 1 and for every vertex u ∈ U , u is adjacent to h4 and the neighbors of u in
H are a subset of {h1, h2, h3, h4}, then there exists a vertex z ∈ V (G)−V (H) such that z
is adjacent to h1 and at least one of h2 and h2r. Furthermore, z is adjacent to only these
vertices in H, and z is not adjacent to any vertex u ∈ U . (See Figure 8.)

3) If k = 2r − 3 and for every vertex u ∈ U , the neighbors of u in H are a subset
of {h2r−3, h2r−2, h2r−1, h2r}, then there exists a vertex z ∈ V (G) − V (H) such that z is
adjacent to h2r and at least one of h1 or h2r−1. Furthermore, z is adjacent to only these
vertices in H, and z is not adjacent to any vertex u ∈ U . (See Figure 9.)

Lemma 11. Let G be a graph with r ≥ 3 such that α = r. Suppose H = P (2r). Moreover,
suppose v is a vertex such that v ∈ V (G) − V (H) and the neighbors of v include neither
h1 nor h2r. Then v is adjacent to exactly two, exactly three, or exactly four consecutive
vertices in H.



Figure 8. Lemma 10.2)

Figure 9. Lemma 10.3)

Lemma 12. Let G be a graph with r ≥ 3 such that α = r. Suppose H = P (2r). Moreover,
suppose v is a vertex such that v ∈ V (G)−V (H) and the neighbors of v include h1. Then
either:

1) v is adjacent to exactly two or exactly three consecutive vertices in H; or
2) v is adjacent to exactly h1, h2, h3, and h4 in H; or
3) v is adjacent to h1, h3, and h4; or
4) r = 3 and v is adjacent to exactly h1, h2, h5, and h6 in H; or
5) r = 3 and v is adjacent to exactly h1, h4, and h5 in H.

Lemma 13. Let G be a graph with r ≥ 3 such that α = r. Suppose H = P (2r). Moreover,
suppose v is a vertex such that v ∈ V (G)−V (H) and the neighbors of v include h2r. Then
either:

1) v is adjacent to exactly two or exactly three consecutive vertices in H; or
2) v is adjacent to exactly h2r−3, h2r−2, h2r−1, and h2r in H; or
3) v is adjacent to exactly h2r−3, h2r−2, and h2r in H; or
4) r = 3 and v is adjacent to exactly h1, h2, h5, and h6 in H; or
5) r = 3 and v is adjacent to exactly h2, h3, and h6 in H.

Let G be a graph with r ≥ 1. Suppose G contains an induced subgraph H such that H =
P (2r) or H = C(2r). Suppose u and v are a pair of vertices where u, v ∈ V (G) − V (H).
Let k be the smallest integer such that u is adjacent to hk and k ′ be the smallest integer
such that v is adjacent to hk ′. Then u and v are said to be degenerate (with respect to
H) if either:

a) the union of their neighbors in H is three or less consecutive vertices; or
b) k = k ′, and the union of their neighbors in H is four or less consecutive vertices

including neither h1 nor h2r; or



c) k = k ′ = 1, both are adjacent to h4, and the union of their neighbors in H is a
subset of {h1, h2, h3, h4}; or

d) k = k ′ = 2r − 3, either δ(u) = 3 or δ(v) = 3, and the union of their neighbors in H
is a subset of {h2r−3, h2r−2, h2r−1, h2r}; or

e) their neighbors in H are identical.

Lemma 14. Let G be a graph with r ≥ 3 such that α = r. Then there exists a subgraph
H of G such that either H = P (2r) or H = C(2r), and if u, v ∈ V (G) − V (H) is a pair
of degenerate vertices with respect to H, u is adjacent to v.

We can now complete the proof of the main theorem. Let us repeat the choice of
the induced subgraph H as described in the proof of Lemma 14 (below). If r ≥ 5 and
G contains an induced C(2r) subgraph, let H be this subgraph. Then G and H satisfy
Lemma 3. If r ≥ 5 and G does not contain an induced C(2r) subgraph, let H be the
induced P (2r) subgraph implied by Lemma 1. If 3 ≤ r ≤ 4 and G contains an induced
C(2r) subgraph that satisfies Lemma 4, let H be this subgraph. If 3 ≤ r ≤ 4 and G does
not contain an induced C(2r) subgraph that satisfies Lemma 4, let H be the induced
P (2r) subgraph implied by Lemma 4.

For each k, 1 ≤ k ≤ 2r − 3, let Xk denote the set of vertices in V (G) − V (H) that are
adjacent to hk but whose neighbors in H are a subset of {hk, hk+1, hk+2, hk+3}. Moreover,
let X2r−2 denote the set of vertices in V (G)−V (H) that are adjacent to h2r−2 but whose
neighbors in H are a subset of {h2r−2, h2r−1, h2r}; let X2r−1 denote the set of vertices
in V (G) − V (H) that are adjacent to h2r−1 but whose neighbors in H are a subset of
{h2r−1, h2r, h1}; and let X2r denote the set of vertices in V (G) − V (H) that are adjacent
to h2r but whose neighbors in H are a subset of {h2r, h1, h2}. There are three exceptions
to this scheme, which are necessary only when r = 3 and H = P (6). We also include in
X2r−1 those vertices in V (G) − V (H) that are adjacent to exactly h2r−2, h2r−1, and h1

in H. Likewise, we include in X2r those vertices in V (G) − V (H) that are adjacent to
exactly h2r−1, h2r, h1, and h2 in H, as well as those vertices that are adjacent to exactly
h2, h3, and h2r in H. By Lemmas 3, 4, 11, 12, and 13, each vertex of V (G) − V (H) is
contained in precisely one of the sets Xj . By Lemma 14, each set Xj induces a clique
in G, except possibly: X1 when H = P (2r); X2r−1 when r = 3 and H = P (6); and X2r

when r = 3 and H = P (6). We inductively construct a Hamiltonian path P .
Step 1) Consider first the case H = C(2r). Let h1 be the initial vertex of P . If X1 is

empty, then we add h2 to P and proceed. Otherwise, assume there exists a vertex v ∈ X1,
which by definition must be adjacent to h1. We next add v to P , and because X1 induces
a clique in G in this case, we can in turn add each additional vertex of X1 to P as well.
Assume u is the last vertex of X1 added to P in this fashion. By our choice of H and
Lemma 3, u must be adjacent to h2. Hence we can add h2 to P and continue.

Next, consider the case H = P (2r). If X1 is empty, let h1 be the initial vertex of
P . Then we add h2 to P and proceed. Otherwise, let Y be those vertices y ∈ X1 such
that δ(y) = 3, and let Z be those vertices z ∈ X1 such that δ(z) ≤ 2. By Lemma 12,
Y ∪ Z = X1. If Y is empty, let h1 be the initial vertex of P . Otherwise, assume there
exists a vertex y ∈ Y . Let y be the initial vertex of P , and because Y induces a clique in
G by Lemma 14, we can in turn add each additional vertex of Y to P as well. Assume u
is the last vertex of Y added to P in this fashion. Since Y ⊂ X1, u must be adjacent to



h1. Hence we can now add h1 to P . In any event, h1 is added to P . Next, if Z is empty,
then we add h2 to P and proceed. Otherwise, assume there exists a vertex z ∈ Z ⊂ X1.
Add z to P , and because Z induces a clique in G by Lemma 14, we can in turn add each
additional vertex of Z to P as well. Assume w is the last vertex of Z added to P in this
fashion. Since δ(w) ≤ 2, w must be adjacent to h2 by Lemma 12. Hence we can add h2

to P and continue.
Step 2) Now suppose we have constructed a path P such that the terminal vertex of

P is hj (1 < j < 2r − 1); each vertex h1, h2, . . . , hj−1 is contained in P ; and each vertex
of X1 ∪ X2 ∪ X3 ∪ . . . ∪ Xj−1 is contained in P . Moreover, suppose these are the only
vertices contained in P . If Xj is empty, then we add hj+1 to P and continue. Otherwise,
assume there exists a vertex v ∈ Xj , which by definition must be adjacent to hj . We next
add v to P (v /∈ X1 ∪X2 ∪X3 ∪ . . .∪Xj−1 assures that v is not already contained on P ).
Because Xj induces a clique in G, we can in turn add each additional vertex of Xj to P .
Assume u is the last vertex of Xj added to P in this fashion. By Lemmas 3, 4, 11, and
13, u must be adjacent to hj+1. Hence we can add hj+1 to P and continue.

Step 3) Now suppose we have constructed a path P such that the terminal vertex of P
is h2r−1; each vertex h1, h2, . . . , h2r−2 is contained in P ; and each vertex of X1∪X2∪X3∪
. . . ∪ X2r−2 is contained in P . Moreover, suppose these are the only vertices contained
in P . If X2r−1 is empty, then we add h2r to P and continue. Otherwise, assume there
exists a vertex v ∈ X2r−1, which by definition must be adjacent to h2r−1. Consider first
the cases H = C(2r), or r ≥ 4 and H = P (2r). We next add v to P , and because X2r−1

induces a clique in G in these cases by Lemma 14, we can in turn add each additional
vertex of X2r−1 to P as well. Assume u is the last vertex of X2r−1 added to P in this
fashion. By our choice of H and Lemmas 3, 11, and 13, u must be adjacent to h2r. Hence
we can add h2r to P and continue.

Next, consider the case r = 3 and H = P (6). If X2r−1 is empty, then we add h2r to P
and proceed. Otherwise, let Y be those vertices in X2r−1 that are adjacent to exactly h4,
h5, and h1 in H, and let Z be those vertices in X2r−1 such that δ(z) ≤ 2. By Lemmas
11, 12, and 13, Y ∪ Z = X2r−1. If Y is not empty, assume y ∈ Y . By Lemma 8, there
exists z ∈ Z also. Add y to P , and because Y induces a clique in G by Lemma 14, we
can in turn add each additional vertex of Y to P as well. Assume u is the last vertex of
Y added to P in this fashion. By Lemma 8, u must be adjacent to z. Hence we can now
add z to P . If Y is empty, then Z is not empty, in which case by the definition of X2r−1,
we can add z to P . In any event, z is added to P . Because Z induces a clique in G by
Lemma 14, we can in turn add each additional vertex of Z to P as well. Assume w is the
last vertex of Z added to P in this fashion. Since δ(w) ≤ 2, w must be adjacent to h2r

by Lemmas 11, 12, and 13. Hence we can add h2r to P and continue.
Step 4) Now suppose we have constructed a path P such that the terminal vertex of P

is h2r; each vertex h1, h2, . . . , h2r−1 is contained in P ; and each vertex of X1 ∪ X2 ∪ X3 ∪
. . .∪ X2r−1 is contained in P . Moreover, suppose these are the only vertices contained in
P . If X2r is empty, then we are finished. Otherwise, assume there exists a vertex v ∈ X2r.
Consider first the cases H = C(2r), or r ≥ 4 and H = P (2r). By definition, v must be
adjacent to h2r in these cases. We next add v to P , and because X2r induces a clique



in G by Lemma 14, we can in turn add each additional vertex of X2r to P as well. The
theorem now follows.

Next, consider the case r = 3 and H = P (6). If X2r is empty, then we add h2r to P
and are finished as before. Otherwise, let Y be those vertices in X2r that are adjacent to
exactly h1, h2, h5, and h6 in H; let Z be those vertices in X2r such that δ(z) ≤ 2; and let
A be those vertices in X2r that are adjacent to exactly h2, h3, and h6 in H. By Lemmas
11, 12, and 13, Y ∪ Z ∪ A = X2r. We consider three cases.

Case 1: A is empty. If Y is not empty, assume y ∈ Y . Add y to P , and because Y
induces a clique in G by Lemma 14, we can in turn add each additional vertex of Y to
P as well. Assume u is the last vertex of Y added to P in this fashion. If Z is empty,
then we are finished. Otherwise, suppose z ∈ Z. By Lemma 7, u must be adjacent to z.
Hence we can now add z to P . If Y is empty, then Z is not empty, in which case by the
definition of X2r−1, we can add z to P . In any event, z is added to P . Because Z induces
a clique in G by Lemma 14, we can in turn add each additional vertex of Z to P as well,
and are finished.

Case 2: A is not empty, but Y is empty. By Lemma 9, Z cannot be empty, and
moreover, there exists z ∈ Z such that z is adjacent to each vertex of A. If Z contains
at least two vertices, let z ′ ∈ Z be some vertex other than z. If Z consists of only z, let
z ′ = z. By definition, z ′ must be adjacent to h2r. Hence we can now add z ′ to P , and
because Z induces a clique in G by Lemma 14, we can in turn add each additional vertex
of Z to P in such a way that z is the last vertex added to P in this fashion. Now assume
a ∈ A. Since a is adjacent to z, we can next add a to P . Since A induces a clique in G
by Lemma 14, we can in turn add each additional vertex of A to P , and are finished.

Case 3: A is not empty, and Y is not empty. By Lemma 9, Z cannot be empty, and
moreover, there exists z ∈ Z such that z is adjacent to each vertex of A. If Z contains
at least two vertices, let z ′ ∈ Z be some vertex other than z. If Z consists of only z, let
z ′ = z. Assume y ∈ Y and a ∈ A. Add y to P , and because Y induces a clique in G
by Lemma 14, we can in turn add each additional vertex of Y to P as well. Assume u is
the last vertex of Y added to P in this fashion. By Lemma 7, u must be adjacent to z ′.
Hence we can now add z ′ to P , and because Z induces a clique in G by Lemma 14, we
can in turn add each additional vertex of Z to P in such a way that z is the last vertex
added to P in this fashion. Since a is adjacent to z, we can next add a to P . Since A
induces a clique in G by Lemma 14, we can in turn add each additional vertex of A to P ,
and are finished.

The theorem again follows. �

Proofs of Lemmas

Lemma 1. Let G be a graph with r ≥ 1 such that α = r. Then G contains either P (2r)
or C(2r) as an induced subgraph. Moreover, if we let H denote an induced P (2r) or C(2r)
subgraph, then every vertex of G is either contained in H or is adjacent to H.

Proof. Let H be an induced r-ciliate guaranteed by Theorem 4. If H is neither P (2r)
nor C(2r), then considering the definition of r-ciliates, α(H) > r. Since H is induced,
α(G) ≥ α(H) > r, a contradiction. Hence H = P (2r) or H = C(2r). Now suppose v is



a vertex of G not contained in H. If v is not adjacent to H, then clearly we can find an
independent set in G including v with order r + 1, again a contradiction. �

Lemma 2. Let G be a graph such that α = r ≥ 1. Then for each vertex v such that
v ∈ V (G) − V (H), v is adjacent to at least two vertices in H.

Proof. If v is not adjacent to at least two vertices in H, then clearly we can find an
independent set in G including v with order r + 1, a contradiction. �

Lemma 3. Let G be a graph with r ≥ 5 such that α = r. If H = C(2r), then for
each vertex v such that v ∈ V (G) − V (H), v is adjacent to exactly two or exactly three
consecutive vertices in H.

Proof. Let a and b be two neighbors of v in H such that δ(v) = δ(a, b). Put δ = δ(v).
Clearly δ ≤ r. First, suppose δ ≤ 2. Then v is adjacent to a subset of three consecutive
vertices in H. If δ = 1, then v is adjacent to two consecutive vertices. But if δ = 2, and v
is not adjacent to three consecutive vertices in H, then clearly we can find an independent
set in G including v with order r + 1, a contradiction.

Next, by way of contradiction, suppose δ ≥ 3. Now v, a, b are contained in C(δ+2) and
C(2r−δ+2) subgraphs, which share only these three vertices. Let C1 denote the C(δ+2)
subgraph and let C2 denote the C(2r − δ + 2) subgraph. Note that V (C1) ∪ V (C2) =
V (H) ∪ {v}. We consider three cases.

Case 1: Suppose δ = r. Then C1 = C(r + 2) and C2 = C(r + 2). Since each vertex
w ∈ V (G)−V (H) is adjacent to at least two vertices in H, then the eccentricity of v is at

most
⌊r + 2

2

⌋
+ 1. Because r ≥ 5, the eccentricity of v is at most r − 1, a contradiction.

Case 2: Suppose 4 ≤ δ ≤ r − 1. Now δ + 2 ≤ r + 1 and 2r − δ + 2 ≤ 2r − 2. Then the
eccentricity of v with relation to H is at most r − 1, which only occurs when δ = 4. If
4 < δ ≤ r − 1, since each vertex not in H is adjacent to at least two vertices in H, then
the eccentricity of v is at most r − 1, a contradiction. Hence δ = 4, which in turn implies
there exists a unique vertex c in H at distance r − 1 from v. Since each vertex not in
H is adjacent to at least two vertices in H, then the eccentricity of v is at most r − 1, a
contradiction.

Case 3: Suppose δ = 3. Let c, d be the two vertices separating a from b in H. Now C1 =
C(5) and C2 = C(2r− 1). Enumerate the vertices of C2 as x0 = v, x1 = a, x2, . . . , x2r−2 =
b. For each vertex x0, x1, x2, . . . , xr−2 and xr+1, xr+2, . . . , x2r−2, there exist unique vertices
yj, zj in H such that the distance from xj to both yj and zj with relation to C2 is r − 1.
Note that yj and zj are adjacent. But the distance from v to both c and d is at most
2, and the distance from v to the remaining vertices in H is at most r − 1. Thus there
exists a non-empty collection of vertices Z0 not in H adjacent only to both y0 = xr−1

and z0 = xr in H, otherwise the eccentricity of v = x0 is at most r − 1, a contradiction.
Recall r ≥ 5, and consider x1. Then y1 = xr+1 and z1 = xr. Because the distance from
x1 to both c and d is at most 2 ≤ r − 2, there exists a non-empty collection of vertices
Z1 not in H adjacent only to both xr and xr+1 in H; otherwise the eccentricity of x1 is
at most r − 1, a contradiction. Likewise, there exists a non-empty collection of vertices
Z2 adjacent only to both xr+1 and xr+2 in H; a non-empty collection of vertices Z2r−2

adjacent only to both xr−1 and xr−2 in H; and a non-empty collection of vertices Z2r−3



adjacent only to both xr−2 and xr−3 in H. But this implies α ≥ r + 1, unless each vertex
of Z1 is adjacent to each vertex of Z2r−3. However, then the eccentricity of x1 is at most
r − 1, again a contradiction. �

Lemma 4. Let G be a graph with 3 ≤ r ≤ 4 such that α = r. Then either:
1) G contains H = C(2r) as an induced subgraph, and for each vertex v such that

v ∈ V (G)−V (H), v is adjacent to exactly two or exactly three consecutive vertices in H,
or

2) G contains P (2r) as an induced subgraph.

Proof. Let us suppose H = C(2r). We shall show that if v is not adjacent to exactly
two or exactly three consecutive vertices in H, then G also contains P (2r) as an induced
subgraph. Let a and b be two neighbors of v on H such that δ(v) = δ(a, b). Put δ = δ(v).
Clearly δ ≤ r.

First, suppose δ ≤ 2. Then v is adjacent to a subset of three consecutive vertices in
H. If δ = 1, then v is adjacent to two consecutive vertices, a contradiction. But if δ = 2,
and v is not adjacent to three consecutive vertices in H, then clearly we can find an
independent set in G including v with order r + 1, a contradiction.

Therefore, we can assume δ ≥ 3. If r = 3, then δ = 3, since δ ≤ r. If r = 4, then δ ≤ 4.
Now v, a, b are contained in C(δ+2) and C(2r− δ +2) subgraphs, which share only these
three vertices. Let C1 denote the C(δ + 2) subgraph and let C2 denote the C(2r − δ + 2)
subgraph. Note that V (C1) ∪ V (C2) = V (H) ∪ {v}. We consider two cases.

Case 1: First suppose r = 4. If δ = 4, then C1 = C(6) and C2 = C(6). Thus the
eccentricity of v with relation to H is at most 3. Let c and d be the unique vertices at
distance 3 from v with relation to C1 and C2, respectively. Since each vertex not in H is
adjacent to at least two vertices in H, there must exist a vertex w not in H adjacent to
only c and d in H, otherwise the eccentricity of v would be 3, a contradiction. However, in
this case, we can choose an independent set of size 5 containing w, another contradiction.
Hence, we can assume δ = 3, C1 = C(5), and C2 = C(7). Let c and d be the unique
vertices at distance 3 from v with respect C2. Again, since each vertex not in H is adjacent
to at least two vertices in H, there must exist a vertex w not in H adjacent to only c and
d in H, otherwise the eccentricity of v would be 3, a contradiction. But now we can find
an induced P (8) in G, starting with w and including all the vertices of H except d.

Case 2: Next suppose r = 3. Then δ = 3 as noted earlier, C1 = C(5), and C2 = C(5).
We can assume a = h1 and b = h4.

Claim: v is adjacent to either both h5 and h6, or h2 and h3. By way of contradiction,
suppose v is adjacent to neither h2 nor h6. Then {v, h2, h6} is an independent set in G of
size 3. Note that the eccentricity of a = h1 with respect to H is at most 2. Moreover, each
vertex w 6= v not in H must be adjacent to some vertex in {v, h2, h6}; otherwise α = 4, a
contradiction. This implies the eccentricity of a is 2 with respect to G, a contradiction.
Hence, v is adjacent to either h2 or h6. Next, by a symmetrical argument, we have v is
adjacent to either h3 or h5.

If v is adjacent to either both h5 and h6, or both h2 and h3, then the claim is established.
Thus we can assume v is adjacent to only both h3 and h6 among {h2, h3, h5, h6}. Since
the eccentricity of v with respect to H is 2, and each vertex not in H is adjacent to at
least two vertices in H, there must exist a vertex w not in H adjacent to only both h2 and



h5 in H. Otherwise, the eccentricity of v with respect to G is at most 2, a contradiction.
Now, by letting w play the role of v in the preceding paragraph, we can show w must be
adjacent to either h1 or h3, a contradiction. This completes the claim.

In light of the claim, we can assume v is adjacent to both h2 and h3. Once again, since
the eccentricity of v with respect to H is at most 2, and each vertex not in H is adjacent
to at least two vertices in H, there must exist a vertex w not in H adjacent to only
both h5 and h6 in H. Otherwise, the eccentricity of v with respect to G is at most 2, a
contradiction. But now we can find an induced P (6) in G, starting with w and including
all the vertices of H except h6. �

Lemma 5. Let G be a graph with r ≥ 3 such that α = r. If H = P (2r) and v is a vertex
such that v ∈ V (G) − V (H), then 1 ≤ δ(v) ≤ 3.

Proof. Since v must be adjacent to at least two vertices in H from Lemma 2, the lower
bound is obvious. Proceeding by contradiction, suppose δ(v) ≥ 4 (noting that this
assumption implies r > 3). Let ha and hb be the two center vertices on the even path
H, where a < b. Let hm and hn be two vertices in H such that δ(v) = δ(hm, hn), where
we assume n > m. We consider two main cases: 1) m < a and n > b (the centers are
between the vertices hm and hn in H); and 2) m ≥ a or n ≤ b.

Case 1a: Suppose that a−m = n−b. We show that the eccentricity of v is at most r−1,
a contradiction. First, let dF (x, y) be the shortest path distance from vertex x to vertex
y contained in a graph F . Without loss of generality, we can assume dG(v, b) ≤ dG(v, a),
as well as dG(v, h2r) ≤ dG(v, h1).Note that there are at least two vertices in H to the left
of hm and at least two vertices in H to the right of hn, because δ(v) ≥ 4 and there must
be the same number on either side due to our supposition. Consequently,

dG(v, hb) ≤ dG (v, ha)
≤ dG(hm, ha) + 1
≤ dH(h1, ha) − dH(h1, hm) + 1
≤ dH(h1, ha) − 1
= r − 2
Now, since δ(v) ≥ 4 and a − m = n − b, we can be assured that dH(hm, ha) =

dH(hn, hb) ≥ 2. So,
dG(v, h2r) ≤ dG(v, h1)
≤ dG(h1, hm) + 1
≤ dH(h1, ha) − dH(hm, ha) + 1
≤ dH(h1, ha) − 1
= r − 2
By the same token, v can reach the other vertices of H in at most r − 2 steps. This

implies its eccentricity is at most r− 1, since every vertex in V (G)− V (H) is adjacent to
a vertex in H by Lemma 1.

Case 1b: Suppose that, without loss of generality, a−m < n− b. We again show that
the eccentricity of v is at most r − 1, a contradiction. First, observe that since δ(v) ≥ 4,
there are at most 2r−3 vertices on the induced subpath of H starting with hm and ending
with hn. This implies the distance between v and every vertex of this induced subpath
is at most r − 1. Furthermore, since 0 < a − m < n − b, there is at least one vertex
strictly between hb and hn in H. Hence, dG(v, h2r) ≤ dH(hb, h2r) − 1 = r − 2. Finally,



dG(v, h1) ≤ dH(h1, ha) = r − 1, because dH(hm, ha) ≥ 1. Putting all this together, v can
reach every vertex in H, except possibly h1, in at most r − 2 steps. Together with the
facts that v can reach h1 in at most r − 1 steps, and every vertex in H is adjacent to at
least one vertex in H other than h1 (from Lemma 2), it follows that the eccentricity of v
is at most r − 1.

Case 2a: Suppose that, without loss of generality, n ≤ b and m > 1. We show that
the eccentricity of hb is at most r− 1, a contradiction. Since δ(v) ≥ 4, dG(hb, h1) ≤ r− 2.
Furthermore, since dG(hb, hi) ≤ r − 2 for 3 ≤ i ≤ b − 1 = a, and dG(hb, h2) ≤ r − 3, we
conclude that hb is at most r − 2 steps from any vertex in H with index less than b. This
is also obviously true for all vertices in H with indices at least b, excepting only h2r, since
dH(hb, h2r) = r − 1. As in the prior case, it follows that the eccentricity of hb is at most
r − 1.

Case 2b: Suppose that, without loss of generality, n ≤ b and m = 1. We show that the
eccentricity of hb is at most r − 1, or α ≥ r + 1, a contradiction either way. Assume that
the eccentricity of hb is at least r. First, observe that dG(hb, h1) ≤ r − 2 (since δ(v) ≥ 4),
and that dG(hb, hi) ≤ r − 2 for 3 ≤ i ≤ b − 1 = a. Hence, the only vertices in H which
could be at distance r−1 from hb are h2 and h2r. Since the eccentricity of hb is at least r,
there must exist a vertex z ∈ V (G) − V (H) which is adjacent to only these two vertices
in H. But then the vertices in H with odd indices together with z form an independent
set of order r + 1. �

Lemma 6. Let G be a graph with r ≥ 3 such that α = r. Suppose H = P (2r). Let v
be a vertex such that v ∈ V (G) − V (H). Then the neighbors of v in H must be a subset
of four consecutive vertices. Moreover, if r ≥ 4 and δ(v) = 3, the neighbors of v in H
cannot be a subset of {h1, h2r−2, h2r−1, h2r}, {h1, h2, h2r−1, h2r}, or {h1, h2, h3, h2r}.

Proof. By Lemma 2, we know that each v ∈ V (G) − V (H) is adjacent to at least two
vertices in H. If v has exactly two neighbors in H, then its neighborhood restricted to H
is clearly a subset of four consecutive vertices, since δ(v) ≤ 3. So we assume that v has
at least three neighbors in H and consider two cases for r.

Case 1: Suppose that r = 3. If v is not adjacent to either of h1 or h6, then its
neighborhood restricted to H is clearly a subset of four consecutive vertices. So without
loss of generality suppose that v is adjacent to h1. We now consider two subcases.

Case 1a: Assume that v is also adjacent to vertex h2. If v has exactly three neighbors
in H, then it is easily verified that its neighborhood restricted to H is a subset of four
consecutive vertices. So we assume that v has four neighbors in H. In this case, there
are six possibilities for the adjacencies of the other two neighbors of v in H. If the
additional two neighbors are exactly {h3, h4}, {h3, h6} or {h5, h6}, then the neighborhood
of v restricted to H is clearly a subset of four consecutive vertices. So to complete the
proof of this subcase, we proceed by way of contradiction and assume that the other two
neighbors of v in H are {h3, h5}, {h4, h5}, or {h4, h6}. First, assume that v is also adjacent
to h3 and h5. It is straightforward to verify that each vertex in H is at distance at most
two from v, and that vertices h4 and h6 are the only vertices in H at distance two from
v. Thus there must exist a vertex zv not in H at distance three from v that is adjacent
to both h4 and h6, and no other vertices of H. But now {zv, h1, h3, h5} determines an
independent set of order four, a contradiction to α = r = 3. Assume that v is instead



adjacent to h4 and h5. It is straightforward to verify that each vertex in H is at distance
at most two from v, and that vertices h3 and h6 are the only vertices in H at distance
two from v. Thus there must exist a vertex zv not in H at distance three from v that is
adjacent to both h3 and h6, and no other vertices of H. It is straightforward to verify
that each vertex in H is at distance at most two from h3, and that vertices h1, h5, and
h6 are the only vertices in H at distance two from h3. Thus there must exist a vertex
z3 not in H at distance three from h3 that is adjacent to a subset of {h1, h5, h6}, and no
other vertices of H. Further, vertex z3 is not adjacent to zv, otherwise the distance from
z3 to h3 is not three. But now {zv, z3, h2, h4} determines an independent set of order four,
a contradiction. Now assume that v is adjacent to h4 and h6. It is straightforward to
verify that each vertex in H is at distance at most two from v, and that vertices h3 and
h5 are the only vertices in H at distance two from vertex v. Thus, there must exist a
vertex zv not in H at distance three from v that is adjacent to both h3 and h5, and no
other vertices of H. But now {zv, h1, h4, h6} determines an independent set of order four,
a contradiction.

Case 1b: Assume that v is not adjacent to h2. If v has exactly three neighbors in
H, then it is easily verified that its neighborhood restricted to H is a subset of four
consecutive vertices, unless a neighbor of v is h5. If the third neighbor is then either h4 or
h6, the neighborhood of v restricted to H is a subset of four consecutive vertices. But if
the neighbors of v restricted to H are precisely {h1, h3, h5}, then {v, h2, h4, h6} determines
an independent set of order four, a contradiction. Now let us assume that v has exactly
four neighbors in H. In this case there are four possibilities: vertex v is adjacent to each
vertex of {h1, h3, h4, h5}, {h1, h3, h4, h6}, {h1, h3, h5, h6}, or {h1, h4, h5, h6}. The last set
of vertices are consecutive, so we only consider the first three possibilities. In each of these
cases, one can verify that each vertex in H is at distance at most two from v, and that
the two vertices in H not adjacent to v are the only vertices in H at distance two from v.
Thus there must exist a vertex zv not in H at distance three from v that is adjacent to the
two vertices of H not adjacent to v (h2 and h6, h2 and h5, or h2 and h4, respectively) and
no other vertices of H. Finally, in each of these cases we will demonstrate an independent
set of order four, which contradicts α = r = 3. The independent sets are {zv, h1, h3, h5},
{zv, h1, h4, h6}, or {zv, h1, h3, h6}, respectively.

Case 2: Suppose that r ≥ 4. Let k be the smallest integer such that v is adjacent to
hk. If k ≥ 4, then since δ(v) ≤ 3, the neighborhood of v restricted to H is clearly a subset
of four consecutive vertices. We now consider the three remaining subcases separately.

Case 2a: Assume that k = 3. If v is not adjacent to h2r, then since δ(v) ≤ 3, the
neighborhood of v restricted to H is clearly a subset of four consecutive vertices. So we
will assume that v is adjacent to h2r. We will show that v must have at least one other
neighbor in H, otherwise our assumption α = r will be violated. Suppose v is adjacent
to precisely h3 and h2r of H. Each vertex in H is at distance at most r − 1 from vertex
h3, and hr+2 and hr+3 are the only vertices in H at distance r − 1 from vertex h3. Thus,
there must exist a vertex z3 not in H at distance r from h3 that is adjacent to hr+2 and
hr+3 , and no other vertices of H. If r is even, then {h1, h3, ..., hr+1, hr+4, hr+6, ..., h2r, z3}
determines an independent set of order r + 1. Hence we can assume r > 4 and r is odd.
Then each vertex in H is at distance at most r − 1 from v, and hr+1 and hr+2 are the



only vertices in H at distance r − 1 from v. Thus, there must exist a vertex zv not in H
at distance r from v that is adjacent to hr+1 and hr+2, and no other vertices of H. Then
{h1, h3, ..., hr, hr+3, hr+5, ..., h2r, zv} determines an independent set of order r + 1. Thus,
if k = 3, then v must have another neighbor in H in addition to h3 and h2r, otherwise
α 6= r.

Since k = 3, v is adjacent to h3 and h2r, and δ(v) ≤ 3, any other neighbor of v in H,
say hj, must satisfy both j − 3 ≤ 3 and 2r − j ≤ 3, which imply that 2r − 3 ≤ j ≤ 6.
So if r ≥ 5, then v could only be adjacent to h3 and h2r of H, which we have shown is
impossible when α = r. Thus, we can assume that r = 4, and note that any neighbor of
v in H other than h3 and h2r has index either 5 or 6. But v cannot be adjacent to either
h5 or h6, otherwise the eccentricity of v would be less than four. Thus, when k = 3, the
neighborhood of v restricted to H is clearly a subset of four consecutive vertices.

Case 2b: Assume that k = 2. If v is not adjacent to h2r nor to h2r−1, then since
δ(v) ≤ 3, the neighborhood of v restricted to H is clearly a subset of four consecutive
vertices. So we will assume that v is adjacent to at least one of h2r−1 and h2r. Moreover,
we observe that if v is only adjacent to h2, h2r−1, and h2r in H, then the neighborhood
of v restricted to H is clearly a subset of four consecutive vertices. Thus, we can assume
that v has at least one additional neighbor in H.

Suppose that v is adjacent to h2r. Now since δ(v) ≤ 3 and v is adjacent to h2 and h2r,
it follows that v can only be adjacent to h3 or h2r−1 when r ≥ 5; or h3, h5, or h7 when
r = 4. If v is adjacent to only h2, h2r, h3, or only to h2, h2r, h2r−1 in H, then it follows
that the neighborhood of v restricted to H is a subset of four consecutive vertices. If v
is adjacent to h2, h2r and to both h3 and h2r−1, then each vertex in H is at distance at
most r − 1 from v, and hr+1 is the only vertex that is possibly at distance exactly r − 1
from v. But this implies that the eccentricity of v is less than r. Lastly, when r = 4 and v
is adjacent to h5, each vertex in H is at distance at most two from v, which implies that
the eccentricity of v is less than four.

Next, suppose that v is not adjacent to h2r. We previously noted that in this case v
must be adjacent to h2r−1. Now since δ(v) ≤ 3 and v is adjacent to h2 and h2r−1, if r ≥ 5,
then v can have no other neighbors in H, in which case the neighborhood of v restricted
to H is clearly a subset of four consecutive vertices. If r = 4, then since δ(v) ≤ 3 and v
is adjacent to h2 and h2r−1, v can also be adjacent to either h4 or h5. But if r = 4 and v
is adjacent to either h4 or h5, then each vertex in H is at distance at most two from v,
which implies that the eccentricity of v is less than four.

Case 2c: Assume that k = 1. If v is not adjacent to any of h2r−2, h2r−1, or h2r, then
since δ(v) ≤ 3, the neighborhood of v restricted to H is clearly a subset of four consecutive
vertices. So we will assume that v is adjacent to at least one of h2r−2, h2r−1, or h2r. Let
k ′ be the smallest integer among 2r − 2, 2r − 1, and 2r such that v is adjacent to hk ′ .

Suppose that k ′ = 2r− 2. In this case, since δ(v) ≤ 3 and v is adjacent to both h1 and
h2r−2, if r ≥ 5, then v can have no other neighbors in H, in which case the neighborhood
of v restricted to H is clearly a subset of four consecutive vertices. If r = 4, then since
δ(v) ≤ 3 and v is adjacent to h1 and h2r−2, v can be adjacent to either h3 or h4. But if
r = 4 and v is adjacent to either of h3 or h4, then each vertex in H is at distance at most



three from v, and h8 is the only vertex that is possibly at distance exactly three from v.
But this implies that the eccentricity of v is less than four.

Suppose that k ′ = 2r−1. In this case, since δ(v) ≤ 3 and v is adjacent to h1 and h2r−1,
if r ≥ 5, then v can have at most one other neighbor in H, namely h2, in which case the
neighborhood of v restricted to H is clearly a subset of four consecutive vertices. If r = 4,
then since δ(v) ≤ 3 and v is adjacent to h1 and h2r−2, v can be adjacent to h2 or h4. If
r = 4 and v is not adjacent to h4, then the neighborhood of v restricted to H is clearly a
subset of four consecutive vertices. If r = 4 and v is adjacent to h4, then each vertex in
H is at distance at most two from v, which implies that the eccentricity of v is less than
four.

Finally, suppose that k ′ = 2r. In this case, since δ(v) ≤ 3 and v is adjacent to h1 and
h2r (but not to h2r−1 and h2r−2), v can have at most two other neighbors in H, namely h2

and h3. In this case (which also completes the first claim in the statement of the lemma),
the neighborhood of v restricted to H is a subset of four consecutive vertices.

Before proving that if r ≥ 4, the neighbors of v in H cannot be a subset of {h1, h2r−2,
h2r−1, h2r}, let us note that once this is proven, the fact that the neighbors of v in H
cannot be a subset of {h1, h2, h3, h2r} will follow by a symmetric argument. To prove
that the neighbors of v in H cannot be subset of {h1, h2r−2, h2r−1, h2r}, let us suppose
otherwise. Since δ(v) = 3, and we have assumed that the set of neighbors of v in H is
a subset of {h1, h2r−2, h2r−1, h2r}, it follows that vertex v must be adjacent to vertices h1

and h2r−2. Since r ≥ 4, it is easily verified that hr−2 and hr−1 are the only vertices in
H possibly at distance r − 1 from h2r−2. Thus, there must exist a vertex z not in H at
distance r from h2r−2 that is adjacent to both hr−2 and hr−1, and no other vertices in H.
If r is even, then the set {h1, h3, ..., hr−3, hr, hr+2, ..., h2r, z} determines an independent
set of order r + 1, which contradicts α = r. So suppose that r is odd. Then r ≥ 5, and
we consider the eccentricity of vertex v. In this case, since r ≥ 5, it is easily verified that
hr−1 and hr are the only vertices in H possibly at distance r − 1 from v. Thus, there
must exist a vertex z not in H at distance r from v that is adjacent to both hr−1 and
hr, and no other vertices in H. In this case, the set {h1, h3, ..., hr−2, hr+1, hr+3, ..., h2r, z}
determines a independent set of order r + 1, again a contradiction to α = r.

Next we show that if r ≥ 4, then the neighbors of v in H cannot be a subset of
{h1, h2, h2r−1, h2r}. Let us suppose otherwise. Since δ(v) = 3, and we have assumed that
the set of neighbors of v in H is a subset of {h1, h2, h2r−1, h2r}, it follows that v must be
adjacent to h2 and h2r−1. Since r ≥ 4, it is easily verified that hr and hr+1 are the only
vertices in H possibly at distance r − 1 from v. Thus, there must exist a vertex z not in
H at distance r from v that is adjacent to both hr and hr+1, and no other vertices in H.
If r is even, the set {h1, h3, ..., hr−1, hr+2, hr+4, ..., h2r, z} determines an independent set of
order r + 1, which contradicts α = r. Thus, r must be odd. In this case, r ≥ 5, and since
hr−1 and hr are the only vertices in H possibly at distance r − 1 from h2r−1, there exists
a vertex z not in H adjacent to both hr−1 and hr, and no other vertices in H. In this
case, the set {h1, h3, ..., hr−2, hr+1, hr+3, ..., h2r, z} determines an independent set of order
r + 1, again a contradiction. �



Lemma 7. Let G be a graph with α = r = 3. Suppose H = P (6). Let U ⊂ V (G)−V (H)
be a collection of vertices such that for every u ∈ U , δ(u) = 3 and the neighbors of u in
H are a subset of {h1, h2, h5, h6}. Then U must induce a clique in G, and each vertex
u ∈ U must be adjacent to each of the vertices {h1, h2, h5, h6}. Moreover, if there exists a
vertex v ∈ V (G)− V (H) adjacent to h6 such that the neighbors of v in H are a subset of
{h1, h2, h6}, then v is adjacent to each vertex of U .

Proof. First, we prove that every vertex u ∈ U must be adjacent to each of the vertices
{h1, h2, h5, h6}. For any u ∈ U , since δ(u) = 3 and the neighbors of u that are in
H determine a subset of {h1, h2, h5, h6}, u must be adjacent to h2 and h5. Further, u
must be adjacent to at least one of h1 or h6, otherwise the independent set {h1, h3, h6, u}
contradicts α = r = 3. Now we proceed by contradiction, and without loss of generality,
suppose that u is not adjacent to h6. Then let us consider the eccentricity of h5. It
is easily verified that there must be a vertex z at distance three from vertex h5 that is
adjacent to only a subset of h1, h2, and h3 in H. Note that z cannot be adjacent to vertex
u, otherwise z is not at distance three from h5. But then there exists an independent
set of order four, namely {u, h4, h6, z}, which contradicts α = r = 3. Thus, every vertex
u ∈ U must be adjacent to each of the vertices h1, h2, h5, and h6.

Next, to prove that U must induce a clique in G, let us suppose otherwise. Let u1 and
u2 be nonadjacent vertices in U . It is easily verified that there must exist a vertex z at
distance three from h5 that is adjacent to only a subset of h1, h2, and h3 in H. Note that
z cannot be adjacent to any of u1, u2, or h4, otherwise it is not at distance three from
h5. In this case, {u1, u2, h4, z} will determine an independent set of order four, which
contradicts α = r = 3. Thus the vertices of U must induce a clique in G.

To prove our last claim, suppose that there exists a vertex v ∈ V (G) − V (H) adjacent
to h6 such that the neighbors of v in H are a subset of {h1, h2, h6}, but that v is not
adjacent to some vertex u ∈ U . We have proven that u must be adjacent to each of the
vertices {h1, h2, h5, h6}. By assumption, v is adjacent to h6 and if its only other neighbor
in H is h2, then the set {h1, h3, h5, v} would contradict α = r = 3. Thus, v must be
adjacent to h1. It is straightforward to verify that each vertex in H is at distance at most
two from vertex u, and that vertices h3 and h4 are the only vertices in H at distance
two from vertex u. Thus there must exist a vertex zu not in H at distance three from
u that is adjacent to both h3 and h4, and no other vertices of H. Similarly, there must
exist a vertex z5 not in H at distance three from h5 that is adjacent to some subset of h1,
h2, and h3, and no other vertices of H. Vertex z5 must be adjacent to h2, otherwise the
set {z5, h2, h4, h6} would contradict α = r = 3. Vertex z5 must also be adjacent to h1,
otherwise the set {z5, h1, h4, h6} would likewise contradict α = r = 3. Moreover, since
u is adjacent to h5, z5 is not adjacent to u. By a symmetric argument, there must exist
a vertex z2 not in H at distance three from h2 that is adjacent to some subset of h4,
h5, and h6, and no other vertices of H. Vertex z2 must be adjacent to h5, otherwise the
set {z2, h1, h3, h5} would contradict α = r = 3. Vertex z2 must also be adjacent to h6,
otherwise the set {z2, h1, h3, h6} would likewise contradict α = r = 3. Moreover, since
u is adjacent to h2, z2 is not adjacent to u. In order that {u, v, h4, z5} not determine
an independent set of order four, the only possibility is that v and z5 must be adjacent.



Similarly, in order that {u, v, h3, z2} not determine an independent set of order four, the
only possibility is that v and z2 must be adjacent.

By assumption, the neighbors of v in H are a subset of {h1, h2, h6}, but since we have
shown that v must be adjacent to z2, it follows that v cannot be adjacent to h2, otherwise
z2 would not be at distance three from h2. In order that {h2, h5, v, zu} not determine an
independent set of order four, the only possibility is that v and zu are adjacent. In this
case, let us consider the eccentricity of v. It is at distance at most two from each vertex of
H ∪ {u, zu, z2, z5}, and distance two from all vertices in H except h1 and h6. Thus, there
exists a vertex zv adjacent to a subset of vertices of H that does not include the vertices
h1 and h6. In this case, in order that {h1, h6, zv, zu} not determine an independent set of
order four, the only possibility is that zv and zu are adjacent. But this contradicts that zv

is at distance three from v, since we had earlier deduced that v and zu are adjacent. �

Lemma 8. Let G be a graph with α = r = 3. Suppose H = P (6). Let U ⊂ V (G)−V (H)
be a collection of vertices such that for every u ∈ U , δ(u) = 3 and the neighbors of u in
H are a subset of {h1, h4, h5, h6}. Then U must induce a clique in G, and each vertex
u ∈ U must be adjacent to exactly the set {h1, h4, h5} in H. Moreover, there exists a
vertex v ∈ V (G) − V (H) adjacent to exactly the set {h1, h5, h6} in H, and each such
vertex v is adjacent to each vertex of U .

Proof. For any u ∈ U , since δ(u) = 3 and the neighbors of u that are in H determine
a subset of {h1, h4, h5, h6}, u must be adjacent to h1 and h4. First, let us prove that u
cannot be adjacent to h6. Suppose otherwise. In this case, u is at distance at most two
from each vertex in H, and the only vertices in H at distance two from vertex u are h2,
h3, and possibly h5. Thus there exists a vertex z at distance three from vertex u that
is adjacent to some subset of the vertices h2, h3, and h5, and to no other vertices in H.
But now {h1, h4, h6, z} determines an independent set of order four, a contradiction to
α = r = 3. Thus the neighbors of u that are in H determine a subset of {h1, h4, h5}.
Next, suppose that u is not adjacent to h5. Then we consider the eccentricity of h4. Since
it is at distance at most two from each vertex in H, and at distance exactly two from
vertices h1, h2, and h6, there exists a vertex z at distance three from h4 that is adjacent to
some subset of {h1, h2, h6}, and to no other vertices in H. Moreover, z is not adjacent to
u, otherwise z is not at distance three from h4. But now {h3, h5, u, z} is an independent
set that contradicts α = r = 3. Thus, u must be adjacent to exactly the set {h1, h4, h5}
in H.

Next, to prove that U must induce a clique in G, let us suppose otherwise. Let u1 and
u2 be nonadjacent vertices in U . It is easily verified that there must exist a vertex z at
distance three from h4 that is adjacent to only a subset of {h1, h2, h6} in H. Moreover,
z cannot be adjacent to either u1 or u2, otherwise z is not at distance three from h4. In
this case, {u1, u2, h3, z} will determine an independent set of order four, which contradicts
α = r = 3. Thus the vertices of U must induce a clique in G.

To prove our last claim, note that we have proven that a vertex u ∈ U must be adjacent
to exactly the set {h1, h4, h5} in H. It is straightforward to verify that each vertex in H
is at distance at most two from h4, and that vertices {h1, h2, h6} are the only vertices in
H at distance two from vertex h4. Thus there must exist a vertex z4 not in H at distance
three from h4 that is adjacent to some subset of {h1, h2, h6}, and no other vertices of H.



Moreover, since u is adjacent to h4, z4 is not adjacent to vertex u, otherwise the distance
from h4 to z4 is not three as assumed. Vertex z4 must be adjacent to both of h1 and h6,
otherwise one of {u, z4, h3, h6} or {h1, h3, h5, z4} contradicts α = r = 3. Similarly, it is
easy to verify that each vertex in H is at distance at most two from vertex u, and that
vertices {h2, h3, h6} are the only vertices in H at distance two from vertex u. Thus, there
must exist a vertex zu not in H at distance three from u that is adjacent to some subset
of {h2, h3, h6}, and no other vertices of H. Vertex zu must be adjacent to both of h3 and
h6, otherwise one of {h1, h3, h5, zu} or {h1, h4, h6, zu} contradicts α = r = 3. We prove
the following claim.

Claim: zu is adjacent to h2. By way of contradiction, suppose that zu is not adjacent
to h2. One can check that each vertex in H is at distance at most two from vertex h3, and
the vertices {h1, h5, h6} are the only vertices in H at distance two from vertex h3. Thus,
there must exist a vertex z3 not in H at distance three from h3 that is adjacent to some
subset of {h1, h5, h6}, and no other vertices of H. Moreover, since zu is adjacent to h3, z3

is not adjacent to zu, otherwise z3 and h3 are not at distance three as assumed. But now
{h2, h4, zu, z3} contradicts α = r = 3. Thus, zu is adjacent to h2.

In this case, each vertex in H is at distance at most two from h6, and vertices {h1, h2, h3, h4}
are the only vertices in H at distance two from vertex h6. Thus, there must exist a vertex
z6 not in H at distance three from h6 that is adjacent to some subset of {h1, h2, h3, h4},
and no other vertices of H. Since z4 and zu are adjacent to h6, z6 is not adjacent to either
z4 or zu, otherwise the distance from h6 to z6 is not three as assumed. So we see that
z4 must be adjacent to zu, otherwise {z4, z6, zu, h5} will determine an independent set of
order four, which contradicts α = r = 3.

Since z6 must be adjacent to two vertices in H, each vertex of H ∪ {u, zu, z4, z6} is at
distance at most two from vertex h3, and vertices h1, h5, and h6 are the only vertices in
H at distance two from vertex h3. Thus, there must exist a vertex z3 not in H at distance
three from h3 that is adjacent to some subset of {h1, h5, h6}, and no other vertices of H.
At this point, we note that the focus of the remainder of our proof is to demonstrate that
z3 is the vertex v that exists as claimed in the statement of the lemma. Vertex z3 must
be adjacent to h6, otherwise {h2, h4, h6, z3}will determine an independent set of order
four, which contradicts α = r = 3. Since zu is adjacent to h3, vertices zu and z3 are
not adjacent, otherwise the distance from h3 to z3 is not three as assumed. Thus, we
can now argue that z3 must be adjacent to h1, otherwise {h1, h4, z3, zu} will determine an
independent set of order four, which contradicts α = r = 3. Finally, we see that z3 must
indeed be adjacent to h5 as well. Otherwise {z3, z6, zu, h5} will determine an independent
set of order four, which contradicts α = r = 3 (note that z3 cannot be adjacent to z6).
Thus, there is a vertex v ∈ V (G) − V (H) adjacent to exactly the set {h1, h5, h6} in H.

To complete the proof, let us observe that z6 must be adjacent to h1, otherwise
{h1, h5, zu, z6} will determine an independent set of order four, which contradicts α =
r = 3. Now it is easily verified that each vertex in H is at distance at most two from
h1, and that vertices {h3, h4, h5, h6} are the only vertices in H at distance two from h1.
Thus, there must exist a vertex z1 not in H at distance three from h1 that is adjacent
to some subset of {h3, h4, h5, h6}, and no other vertices of H. Since vertices u and z3 are
adjacent to h1, z1 is not adjacent to either u or z3, otherwise the distance from h1 to z1



is not three as assumed. It follows that z3 must be adjacent to u, otherwise {u, z1, z3, h2}
will determine an independent set of order four, which contradicts α = r = 3. �

Lemma 9. Let G be a graph with α = r = 3. Suppose H = P (6). Let U ⊂ V (G)−V (H)
be a collection of vertices such that for every u ∈ U , δ(u) = 3 and the neighbors of u in
H are a subset of {h1, h2, h3, h6}. Then U must induce a clique in G, and each vertex
u ∈ U must be adjacent to exactly the set {h2, h3, h6} in H. Moreover, there exists a
vertex v ∈ V (G) − V (H) adjacent to exactly the set {h1, h2, h6} in H, and each such
vertex v is adjacent to each vertex of U .

Proof. The proof is symmetric to the proof of Lemma 8. �

Lemma 10. Let G be a graph with r ≥ 3 such that α = r. Assume H = P (2r). Suppose
U is a collection of vertices such that U ⊂ V (G)− V (H) and k =min{j | u ∈ U and u is
adjacent to hj}. Moreover, suppose for every u ∈ U that u is adjacent to hk, and δ(v) = 3
for some v ∈ U . Then:

1) If 2 ≤ k ≤ 2r−4, then there exists a vertex z ∈ V (G)−V (H) such that z is adjacent
to both h1 and h2r. Furthermore, z is adjacent to only these two vertices in H, and z is
not adjacent to any vertex u ∈ U .

2) If k = 1 and for every vertex u ∈ U , u is adjacent to h4 and the neighbors of u in
H are a subset of {h1, h2, h3, h4}, then there exists a vertex z ∈ V (G)−V (H) such that z
is adjacent to h1 and at least one of h2 and h2r. Furthermore, z is adjacent to only these
vertices in H, and z is not adjacent to any vertex u ∈ U .

3) If k = 2r − 3 and for every vertex u ∈ U , the neighbors of u in H are a subset
of {h2r−3, h2r−2, h2r−1, h2r}, then there exists a vertex z ∈ V (G) − V (H) such that z is
adjacent to h2r and at least one of h1 or h2r−1. Furthermore, z is adjacent to only these
vertices in H, and z is not adjacent to any vertex u ∈ U .

Proof. By Lemma 2, we know that v is adjacent to at least two vertices in H. First, we
make the following simple but useful observations.

*) If k ≥ 4, then since δ(v) = 3, v is adjacent to hk+3.
**) If k ≤ 3, then since δ(v) = 3, v is adjacent to hk+3 or h2r−(3−k).
Proof of 1). Recall we are assuming that 2 ≤ k ≤ 2r − 4. First, suppose r = 3. Then

k = 2, and by **, v is adjacent to h2 and also h5. We begin by showing that v is not
adjacent to h6, so suppose otherwise. In this case, it is straightforward to verify that
each vertex in H is at distance at most two from h2, and that h4, h5, and h6 are the
only vertices in H possibly at distance two from h2. Thus, there must exist a vertex z2

not in H at distance three from v that is adjacent to a subset of h4, h5, and h6, and
no other vertices of H. Clearly, z2 is not adjacent to v, otherwise h2 and z2 are not at
distance three, as assumed. But now, the set {h1, h3, v, z2} contradicts α = r = 3. Next,
observe that v must adjacent to both h3 and h4, otherwise an independent set of order
four is easily found, namely {h1, h3, h6, v} or {h1, h4, h6, v}. Now, it is straightforward to
verify that each vertex in H is at distance at most two from v, and that h1 and h6 are
the only vertices in H at distance two from v. Thus, there must exist a vertex z not in
H at distance three from v that is adjacent to both h1 and h6, and no other vertices of
H. Clearly, z is not adjacent to v, otherwise they are not at distance three, as assumed.
If there is some u ∈ U that is adjacent to z, then by assumption u is also adjacent to h2



but not to v (otherwise z and v are not at distance three). Vertex u must be adjacent to
h6, otherwise the set {u, v, h1, h6} contradicts α = r = 3. Now, it is easily verified that
there must be a vertex z2 not in H at distance three from h2. Since z2 is not adjacent to
v, u, and h1, the set {u, v, h1, z2} contradicts α = r = 3. Thus, 10.1) is true when r = 3.

Next suppose that r ≥ 4, and let us consider five cases.
Case 1a: Suppose that k = 2. Then by **, v may be adjacent to h5 or h2r−1. By Lemma

6, we see that v cannot be adjacent to both h5 and h2r−1, otherwise the neighborhood of
v restricted to H is a not subset of four consecutive vertices.

First, we will show that v cannot be adjacent to h2r−1. So suppose otherwise. In this
case, by Lemma 6, we see that the only other possible neighbor of v is h2r, otherwise the
neighborhood of v in H is not a subset of four consecutive vertices. Observe that v is at
distance at most r− 1 from all vertices of H. Moreover, hr and hr+1 are the only vertices
possibly at distance r − 1 from v in H. Thus, there is a vertex zv at distance r from v
that is adjacent to hr and hr+1, and no other vertices of H. Now, if r is even, then the
set {h1, h3, ..., hr−1, hr+2, hr+4, ..., h2r, zv} determines an independent set of order r + 1,
which contradicts α = r. If r is odd, then observe h2 is at distance at most r − 1 from
all vertices of H. Moreover, hr+1 and hr+2 are the only vertices possibly at distance r− 1
from v in H. Thus, there is a vertex z2 at distance r from h2 that is adjacent to hr+1

and hr+2, and no other vertices of H. In this case, the set {h1, h3, ..., hr, hr+3, ..., h2r, z3}
determines an independent set of order r + 1, which contradicts α = r.

Next, suppose that v is adjacent to h5. By Lemma 6, we see that the only other
neighbors of v are h3 and h4, otherwise the neighborhood of v in H is not a subset of
four consecutive vertices. Next, observe that v must be adjacent to both h3 and h4,
otherwise an independent set of order r + 1 is easily found, namely {h1, h3, h6, ..., h2r, v}
or {h1, h4, h6, ..., h2r, v}. Now, it is easily verified that hr+1 is at distance at most r − 1
from all vertices of H. Moreover, h1 and h2r are the only vertices in H possibly at distance
r − 1 from hr+1. Thus, there is a vertex z = zr+1 at distance r from hr+1 that is adjacent
to h1 and h2r, and no other vertices of H. Clearly, zr+1 is not adjacent to v, otherwise hr+1

and zr+1 are not at distance r, as assumed. If there is some u ∈ U that is adjacent to zr+1,
then by assumption u is also adjacent to h2, but not to any of h4, h5, ..., h2r−2 (otherwise,
hr+1 and zr+1 are not at distance r). Now, in order that the set {h1, h4, h6, ..., h2r, u} not
be an independent set of order r+1, u must be adjacent to h2r. Vertex u may be adjacent
to h3 or h2r−1, but not to both, since by Lemma 6 the neighborhood of u restricted to
H must be a subset of four consecutive vertices. If u is adjacent to h3, then it is easily
verified that u is at distance at most r−1 from all vertices of H. Moreover, hr+1 and hr+2

are the only vertices in H possibly at distance r− 1 from u. Thus, there is a vertex zu at
distance r from u that is adjacent to hr+1 and hr+2, and no other vertices of H. Similarly,
it is easily verified that h3 is at distance at most r − 1 from all vertices of H. Moreover,
hr+2 and hr+3 are the only vertices in H possibly at distance r−1 from h3. Thus, there is
a vertex z3 at distance r from h3 that is adjacent to hr+2 and hr+3, and no other vertices
of H. Now, if r is odd, then the set {h1, h3, ..., hr, hr+3, hr+5, ..., h2r, zu} determines an
independent set of order r + 1, which contradicts α = r. And, if r is even, then the set
{h1, h3, ..., hr+1, hr+4, hr+6, ..., h2r, z3} determines an independent set of order r+1, which
contradicts α = r. Thus if k = 2, v is adjacent to h5, and r ≥ 4, then 10.1) holds.



Case 1b: Suppose that k = 3. Then by **, v may be adjacent to h6 or h2r. By Lemma
6, we see that v cannot be adjacent to both h6 and h2r, otherwise the neighborhood of v
restricted to H is a not subset of four consecutive vertices.

First, we will show that v is not adjacent to h2r. So suppose otherwise. In this case, by
Lemma 6 we see that v can have no other neighbors in H, otherwise the neighborhood
of v in H is not a subset of four consecutive vertices. Next, it easily verified that v is
at distance at most r − 1 from all vertices of H. Moreover, hr+1 and hr+2 are the only
vertices possibly at distance r − 1 from vertex v in H. Thus, there is a vertex zv at
distance r−1 from vertex v that is adjacent to hr+1 and hr+2, and no other vertices of H.
If r is even, then the set {h2, h4, ..., hr, hr+3, ..., h2r−1, zv, v} determines an independent
set of order r + 1, which contradicts α = r. Now, observe that h3 is at distance at most
r − 1 from all vertices of H, and that hr+2 and hr+3 are the only vertices possibly at
distance r − 1 from vertex h3 in H. Thus, there is a vertex z3 at distance r − 1 from h3

that is adjacent to hr+2 and hr+3, and no other vertices of H. So, if r is odd, then the
set {h2, h4, ..., hr+1, hr+4, ..., h2r−1, z3} determines an independent set of order r+1, which
contradicts α = r. Thus, we assume that v is adjacent to h6. By Lemma 6, we see that
the only other neighbors of v in H are h4 and h5, otherwise the neighborhood of v in H
is not a subset of four consecutive vertices. If r = 4, then it is easily verified that v is at
distance at most three from all vertices of H. Moreover, h1 and h2r are the only vertices
possibly at distance three from vertex u in H. Thus, there is a vertex z = zv at distance
four from vertex v that is adjacent to h1 and h2r, and no other vertices of H. If there is
some u ∈ U that is adjacent to zv, then by assumption u is also adjacent to h3, but now v
and zv are at distance three, which contradicts our assumption that they were at distance
four. On the other hand, if r ≥ 5, then it is easily verified that hr+1 is at distance at
most r − 1 from all vertices of H. Moreover, h1 and h2r are the only vertices possibly at
distance r − 1 from vertex hr+1. Thus, there is a vertex z = zr+1 at distance r from hr+1

that is adjacent to h1 and h2r, and no other vertices of H. If there is some u ∈ U that is
adjacent to zr+1, then by assumption u is also adjacent to h3, but now hr+1 and zr+1 are
at distance four, which contradicts our assumption that they are at distance r ≥ 5. Thus
if k = 3, v is adjacent to h6, and r ≥ 4, then 10.1) holds.

Case 1c: Suppose that 4 ≤ k ≤ r − 2. Then r ≥ 6 and 7 ≤ k + 3 ≤ r + 1. By *, v is
adjacent to hk+3. Now it is easily verified that hr+1 is at distance at most r − 1 from all
vertices of H. Moreover, h1 and h2r are the only vertices in H possibly at distance r − 1
from hr+1. Thus, there is a vertex z = zr+1 at distance r from hr+1 that is adjacent to
h1 and h2r, and no other vertices of H. Clearly, v is not adjacent to zr+1, otherwise hr+1

and zr+1 are not at distance r as assumed. Now assume, by way of contradiction, that
zr+1 is adjacent to some u ∈ U . By definition of the set U , u is adjacent to hk. But now
the distance between zr+1 and hr+1 is less than r, which contradicts our assumption that
the distance from zr+1 to hr+1 is r.

Case 1d: If k = r− 1, then k +3 = r +2 and the distance from v to all vertices of H is
at most r − 1. Moreover, h1and h2r are the only vertices possibly at distance r − 1 from
v. Thus, there is a vertex z = zv at distance r from v that is adjacent to h1 and h2r, and
clearly v is not adjacent to zv. Now assume, by way of contradiction, that zv is adjacent
to some u ∈ U . By definition of the set U , u is adjacent to hk. But now the distance



between v and zv is three, which contradicts our assumption that the distance from zv to
v is r ≥ 4.

Case 1e: Suppose that r ≤ k ≤ 2r − 4. Then r + 3 ≤ k + 3 ≤ 2r − 1. In this case, let
us consider the eccentricity of hr. Vertex hr is at distance at most r − 1 from all vertices
of H. Moreover, h1 and h2r are the only vertices possibly at distance r−1 from hr. Thus,
there is a vertex z = zr at distance r from hr that is adjacent to h1 and h2r, and clearly
v is not adjacent to zr. Now assume, by way of contradiction, that zr is adjacent to some
u ∈ U . By definition of the set U , u is adjacent to hk. But now the distance between zr

and hr is less than r, which contradicts our assumption that the distance from zr to hr is
r.

Proof of 2). Assume that k = 1 and for every vertex u ∈ U , u is adjacent to h4 and
the neighbors of u in H are a subset of {h1, h2, h3, h4}. Because δ(v) = 3, v is adjacent
to h1 and h4. Let us consider the eccentricity of hr+1. Since r ≥ 3, all vertices of H
are at distance at most r − 1 from hr+1, and h1, h2, and h2r are the only vertices in H
possibly at distance r − 1 from hr+1. Thus, there must exist a vertex z = zr+1 adjacent
to at least two of h1, h2, and h2r in H. If zr+1 is adjacent to only h2 and h2r, then
{h1, h3, h5, ..., h2r−1, zr+1} determines an independent set of order r + 1, a contradiction
to α = r. Thus, zr+1 must be adjacent to h1. Since zr+1 must have two neighbors in H,
zr+1 must be adjacent to at least one of h2 or h2r. Clearly, z is not adjacent to v. Now,
assume by way of contradiction, that zr+1 is adjacent to some u ∈ U . By definition of
the set U , u is adjacent to h4. But now the distance between zr+1 and hr+1 is less than
r, which contradicts our assumption that the distance from zr+1 to hr+1 is r.

Proof of 3). Assume that k = 2r− 3 and for every vertex u ∈ U , the neighbors of u in
H are a subset of {h2r−3, h2r−2, h2r−1, h2r}. Because δ(v) = 3, v is adjacent to h2r−3 and
h2r. Let us consider the eccentricity of hr. Since r ≥ 3, all vertices of H are at distance at
most r − 1 from hr, and h1, h2r−1, and h2r are the only vertices in H possibly at distance
r−1 from hr. Thus, there must exist a vertex z = zr adjacent to at least two of h1, h2r−1,
and h2r in H. If zr is adjacent only to h1 and h2r−1 in H, then {h2, h4, h6, ..., h2r, zr}
determines an independent set of order r + 1, a contradiction to α = r. Thus, zr must be
adjacent to h2r. Since zr must have two neighbors in H, zr must be adjacent to at least
one of h1 or h2r−1. Clearly, zr is not adjacent to v. Now, assume by way of contradiction,
that zr is adjacent to some u ∈ U . By definition of the set U , u is adjacent to h2r−3. But
now the distance between zr and hr is less than r, which contradicts our assumption that
the distance from zr to hr is r. �

Lemma 11. Let G be a graph with r ≥ 3 such that α = r. Suppose H = P (2r). Moreover,
suppose v is a vertex such that v ∈ V (G) − V (H) and the neighbors of v include neither
h1 nor h2r. Then v is adjacent to exactly two, exactly three, or exactly four consecutive
vertices in H.

Proof. Let k be the smallest integer such that v is adjacent to hk. Then clearly k ≥ 2.
By Lemma 5, δ(v) ≤ 3. If δ(v) = 3, then by Lemmas 6, 7, and 8, 2 ≤ k ≤ 2r − 4. By
Lemma 10.1), there exists a vertex z ∈ V (G) − V (H) such that z is adjacent to both h1

and h2r. Furthermore, z is adjacent to only these two vertices in H, and z is not adjacent
to v. In this case, we first prove the following claim.



Claim. v is adjacent to four vertices in H. By way of contradiction, assume v
is not adjacent to at least one of hk+1 or hk+2. Suppose k is even. Then the set
{h1, h3, ..., hk−1, hk+1, hk+4, ..., h2r} ∪ {v} (in case v is not adjacent to hk+1), or the set
{h1, h3, ..., hk−1, hk+2, hk+4, ..., h2r} ∪ {v} (in case v is not adjacent to hk+2) is an inde-
pendent set of order r + 1, a contradiction. On the other hand, if k is odd, then the set
{h2, h4, ..., hk−1, hk+1, hk+4, ..., h2r−1} ∪ {v, z} (in case v is not adjacent to hk+1), or the
set {h2, h4, ..., hk−1, hk+2, hk+4, ..., h2r−1} ∪ {v, z} (in case v is not adjacent to hk+2) is an
independent set of order r + 1, a contradiction. Thus, the claim is correct.

Now, if v has four neighbors in H, then since δ(v) = 3, the four neighbors are clearly
consecutive. Suppose v has three neighbors in H. Then by the claim, δ(v) = 2, otherwise
v would be forced to have four neighbors in H. Thus, if v has three neighbors in H, they
must be consecutive. Last, suppose that vertex v has two neighbors in H. By the claim,
δ(v) ≤ 2, otherwise v would be forced to have four neighbors in H. If δ(v) = 2, then v
is adjacent to hk and hk+2. In this case, we have a contradiction, since when k is even
{h1, h3, ..., hk−1, hk+1, hk+3, ..., h2r−1}∪{v} is an independent set of order r +1, and when
k is odd {h2, h4, ..., hk−1, hk+1, hk+3, ..., h2r} ∪ {v} is an independent set of order r + 1.
Thus, δ(v) = 1, and the two neighbors of v are consecutive. �

Lemma 12. Let G be a graph with r ≥ 3 such that α = r. Suppose H = P (2r). Moreover,
suppose v is a vertex such that v ∈ V (G)−V (H) and the neighbors of v include h1. Then
either:

1) v is adjacent to exactly two or exactly three consecutive vertices in H; or
2) v is adjacent to exactly h1, h2, h3, and h4 in H; or
3) v is adjacent to h1, h3, and h4; or
4) r = 3 and v is adjacent to exactly h1, h2, h5, and h6 in H; or
5) r = 3 and v is adjacent to exactly h1, h4, and h5 in H.

Proof. First, suppose that δ(v) = 1. Then v is clearly adjacent to exactly two consecutive
vertices in H (namely h1 and h2r, or h1 and h2).

Next, suppose that δ(v) = 2 but v is not adjacent to three consecutive vertices in H.
Let hm and hn be the two vertices in H adjacent to v so that δ(hm, hn) = 2, and let c be
the vertex in H between hm and hn (consecutive to both of them) which is not adjacent
to v. Since r ≥ 3, by Lemma 6, v cannot be adjacent to any other vertices of H other
than hm and hn. We can form an independent set with α +1 vertices by including v with
a maximum independent set in H containing c but not containing either hm or hn. This
is a contradiction. Thus, if δ(v) = 2, v is adjacent to three consecutive vertices in H.

Last, suppose that δ(v) = 3. Then v cannot be adjacent to exactly two or exactly three
consecutive vertices in H. We consider the cases r ≥ 4 and r = 3 separately. If r ≥ 4,
by Lemma 6, we know that the neighbors of v in H must be a subset of {h1, h2, h3, h4}.
Now, v must be adjacent to h4 (because δ(v) = 3), and it must also be adjacent to
h1 by hypothesis. If v is adjacent to each of the vertices {h1, h2, h3, h4}, we are done.
Therefore, suppose that v is not adjacent to h3. Now, by Lemma 10.2), there exists
a vertex z ∈ V (G) − V (H) such that z is adjacent to h1 and at least one of h2 and
h2r. Furthermore, z is adjacent to only these vertices in H, and z is not adjacent to
v. Consequently, we can form an independent set including v, z, and h3, together with



{h5, h7, ..., h2r−1}, which has α + 1 vertices, a contradiction. Thus, v must be adjacent to
h1, h3, and h4, the desired result.

On the other hand, if r = 3, then the neighbors of v in H must be a subset of
{h1, h2, h3, h4}, {h1, h4, h5, h6}, or {h1, h2, h5, h6}. If these neighbors are a subset of
{h1, h2, h3, h4}, we can argue as in the preceding case to get the desired result. If they
are a subset of {h1, h4, h5, h6}, then by Lemma 8, v must be adjacent to exactly h1, h4,
and h5 in H. Finally, if they are a subset of {h1, h2, h5, h6}, then by Lemma 7, v must be
adjacent to exactly h1, h2, h5, and h6 in H. �

Lemma 13. Let G be a graph with r ≥ 3 such that α = r. Suppose H = P (2r). Moreover,
suppose v is a vertex such that v ∈ V (G)−V (H) and the neighbors of v include h2r. Then
either:

1) v is adjacent to exactly two or exactly three consecutive vertices in H; or
2) v is adjacent to exactly h2r−3, h2r−2, h2r−1, and h2r in H; or
3) v is adjacent to exactly h2r−3, h2r−2, and h2r in H; or
4) r = 3 and v is adjacent to exactly h1, h2, h5, and h6 in H; or
5) r = 3 and v is adjacent to exactly h2, h3, and h6 in H.

Proof. The proof is symmetric to the proof of Lemma 12. �

Lemma 14. Let G be a graph with r ≥ 3 such that α = r. Then there exists a subgraph
H of G such that either H = P (2r) or H = C(2r), and if u, v ∈ V (G) − V (H) is a pair
of degenerate vertices with respect to H, u is adjacent to v.

Proof. If r ≥ 5 and G contains an induced C(2r) subgraph, let H be this subgraph. Then
G and H satisfy Lemma 3. If r ≥ 5 and G does not contain an induced C(2r) subgraph,
let H be the induced P (2r) subgraph implied by Lemma 1. If 3 ≤ r ≤ 4 and G contains
an induced C(2r) subgraph that satisfies Lemma 4, let H be this subgraph. If 3 ≤ r ≤ 4
and G does not contain an induced C(2r) subgraph that satisfies Lemma 4, let H be the
induced P (2r) subgraph implied by Lemma 4.

If H = C(2r), then G and H satisfy either Lemma 3 or Lemma 4. Thus, the union of
the neighbors of u and v in H is three or less consecutive vertices. Let X be this union.
Then the subgraph induced by V (H)−X has an independent set of size r− 1. Thus if u
and v are not adjacent, G has an independent set of size r + 1, a contradiction.

Therefore, assume H = P (2r). As in the preceding case, if the union X of the neighbors
of u and v in H is three or less consecutive vertices and u and v are not adjacent, then
G has an independent set of size r + 1, a contradiction. On the other hand, suppose X
is not three or less consecutive vertices. We consider four cases, which correspond to the
four remaining clauses b) through e) in the definition of degenerate vertices.

Case 1: X is four or less consecutive vertices including neither h1 nor h2r, and k = k ′.
By our suppositions and Lemma 5, we have that 1 ≤ δ(u), δ(v) ≤ 3, and either δ(u) = 3
or δ(v) = 3. Otherwise, X is three or less consecutive vertices. Assume δ(u) = 3. In
addition, by the definition of k, we have k < 2r − 3. Then by Lemma 10.1), there exists
a vertex z ∈ V (G) − V (H) such that z is adjacent to both h1 and h2r. Furthermore,
z is adjacent to only these vertices in H, and z is adjacent to neither u nor v. Since
δ(u), δ(v) ≤ 3, the neighbors of u and v in H are contained in {hk, hk+1, hk+2, hk+3}.



Thus, if u and v are not adjacent, then we can choose and independent set of size r + 1
from the vertices V (H) − X, u, v, and z, a contradiction.

Case 2: X is a subset of {h1, h2, h3, h4}, k = k ′ = 1, and both u and v are adjacent
to h4. By Lemma 10.2), there exists a vertex z ∈ V (G) − V (H) such that z is adjacent
to h1 and at least one of h2 and h2r. Furthermore, z is adjacent to only these vertices
in H, and z is adjacent to neither u nor v. Thus, if u and v are not adjacent, then we
can choose and independent set of size r + 1 from the vertices V (H) − X, u, v, and z, a
contradiction.

Case 3: X is a subset of {h2r−3, h2r−2, h2r−1, h2r}, k = k ′ = 2r− 3, and either δ(u) = 3
or δ(v) = 3. By Lemma 10.3), there exists a vertex z ∈ V (G) − V (H) such that z is
adjacent to h2r and at least one of h1 or h2r−1. Furthermore, z is adjacent to only these
vertices in H, and z is adjacent to neither u nor v. Thus, if u and v are not adjacent,
then we can choose and independent set of size r + 1 from the vertices V (H) − X, u, v,
and z, a contradiction.

Case 4: The neighbors of u and v on H are identical. By our suppositions and Lemma
5, we have that δ(u) = δ(v) = 3. If 2 ≤ k ≤ 2r − 4, then by Lemma 10.1), there exists
a vertex z ∈ V (G) − V (H) such that z is adjacent to both h1 and h2r. Furthermore,
z is adjacent to only these two vertices in H, and z is adjacent to neither u nor v. If
r ≥ 4, then by Lemma 6, X is four consecutive vertices contained in {h2, h3, . . . , h2r−1}.
If r = 3, by Lemmas 6, 7, 8, and 9, X is four consecutive vertices contained in either
{h2, h3, . . . , h5=2r−1} or {h1, h2, h3, . . . , h6}. If X is four consecutive vertices contained in
{h2, h3, . . . , h2r−1}, and u and v are not adjacent, then we can choose and independent
set of size r + 1 from the vertices V (H) − X, u, v, and z, a contradiction. If r = 3 and
X is contained in {h1, h2, h3, . . . , h6}, then u and v are adjacent by Lemma 9.

Likewise, if k = 1 and r ≥ 4, then by Lemma 6, X is contained in {h1, h2, h3, h4}. Of
course, even if r = 3, it may still be the case that X is contained in {h1, h2, h3, h4}. If this
is true, since δ(u) = δ(v) = 3 implies each of u and v is adjacent to h4, by Lemma 10.2)
there exists a vertex z ∈ V (G) − V (H) such that z is adjacent to h1 and at least one of
h2 and h2r. Furthermore, z is adjacent to only these vertices in H, and z is adjacent to
neither u nor v. Thus if u and v are not adjacent, then we can choose and independent
set of size r + 1 from the vertices V (H) − X, u, v, and z, a contradiction. Therefore,
suppose r = 3, but X is not contained in {h1, h2, h3, h4}. By Lemma 6, X is contained
in either {h1, h2, h5, h6}, {h1, h4, h5, h6}, or {h1, h2, h3, h6}. In any event, we can apply
Lemmas 7, 8, and 9 to deduce that u and v are adjacent.

If k = 2r − 3, X is contained in {h2r−3, h2r−2, h2r−1, h2r}. Since δ(u) = δ(v) = 3, then
by Lemma 10.3), there exists a vertex z ∈ V (G)−V (H) such that z is adjacent to h2r and
at least one of h1 or h2r−1. Furthermore, z is adjacent to only these vertices on H, and z
is adjacent to neither u nor v. Thus if u and v are not adjacent, then we can choose an
independent set of size r + 1 from the vertices V (H) −X, u, v, and z, a contradiction.

Finally, if k > 2r − 3, X is three or less consecutive vertices, which we already showed
implies u is adjacent to v. �



Open Problems

Analogous to the definitions of path number and bipartite number, the tree number
of a graph G is the maximum order of an induced tree subgraph. Likewise, the induced
circumference of G is the maximum order of an induced cycle subgraph. These invariants
are denoted by t = t(G) and Cind = Cind(G), respectively. Let κ = κ(G) be the connec-
tivity of G. The following conjecture of Graffiti.pc interested us because of its similarity
to the well-known Erdös-Chvátal Theorem, which states that if κ ≥ α− 1 for a graph G,
then the graph has a Hamiltonian path.

Conjecture 3. (Graffiti.pc 199) Let G be a graph. If κ ≥ t − 2, then G contains a
Hamiltonian path.

Let d1, d2, . . . , dn be the degree sequence of a graph G arranged in non-decreasing order.
The annihilation number of G, A = A(G), is the largest integer k such that the sum of
the first k terms of the sequence, d1 + d2 + . . . + dk, is at most half the sum of the entire
sequence (i.e. the size of G). This invariant was introduced in [13], where it was shown to
be an upper bound on the independence number of the graph. The definition presented
here is due to Fajtlowicz, although R. Pepper showed it was equivalent to the original
definition presented in [13].

Conjecture 4. (Graffiti.pc 205) Let G be a graph. If Cind ≥ 2(A − 1), then G contains
a Hamiltonian path.

Conjecture 5. (Graffiti.pc 201) Let G be a graph. If p = n − d2 + 1, then G contains a
Hamiltonian path.

For a graph G, let L = L(G) denote the maximum number of leaves of a spanning tree
of G. We call this invariant the leaf number of G. The following conjecture of Graffiti.pc
related to L is reminiscent of Dirac’s famous sufficient conditions for a graph to contain
a Hamiltonian cycle or path. Let δ = δ(G) be the minimum degree of G.

Conjecture 6. (Graffiti.pc 190) Let G be a graph. If δ ≥ L + 1

2
, then G contains a

Hamiltonian path.
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[12] O. Favaron, M. Mahéo, and J-F. Saclé, Some results on conjectures of Graffiti - 1, Ars Combinatoria,

29(1990), p. 90-106.
[13] R. Pepper, “Binding Independence,” Ph.D. Dissertation, University of Houston, Houston, TX (2004).
[14] D. B. West, “Introduction to Graph Theory” (2nd. ed.), Prentice-Hall, NJ, 2001.

University of Houston-Downtown, Houston, TX, 77002


