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Abstract. In this note, we prove several lower bounds on the domination number of

simple connected graphs. Among these are the following: the domination number is at

least two-thirds of the radius of the graph, three times the domination number is at least

two more than the number of cut-vertices in the graph, and the domination number of

a tree is at least as large as the minimum order of a maximal matching.

1. Introduction and Key Definitions

Let G = (V,E) be a simple connected graph of finite order n = |V |. Although we

may identify a graph G with its set of vertices, in cases where we need to be explicit we

write V (G) to denote the vertex set of G. A set D of vertices of a graph G is called

a dominating set provided each vertex of V − D is adjacent to a member of D. The

domination number of G, denoted γ = γ(G), is the cardinality of a smallest dominating

set in G. The eccentricity of a vertex v ∈ G is the maximum of distances from v to any

of the other vertices of G – where the distance between two vertices means the number

of edges in a shortest path connecting them. The minimum eccentricity of the graph is

called the radius and denoted r(G). The maximum eccentricity of the graph is called

the diameter and denoted d(G). A vertex of minimum eccentricity is called a center

vertex of G and the center set C(G) (or center) is the set of all centers of the graph.

The eccentricity of the center of G, denoted by r̂(G), is the maximum distance from the

center set to vertices not in the center set, where the distance from a vertex to a set is the

smallest distance from the vertex to any of the vertices in the set. A vertex of maximum

eccentricity is called a boundary vertex of G and the boundary set B(G) (or boundary)

is the set of all boundary vertices of the graph. Vertices of maximum eccentricity are

also called peripheral and what we call the boundary is also called the periphery [2]. The

eccentricity of the boundary of G, denoted by d̂(G), is the maximum distance from the

boundary set to vertices not in the boundary set. Finally, a matching is an independent set
1
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of edges and a cut-vertex is a vertex whose deletion increases the number of components.

For general graph theory terminology and notation that is not presented here, the reader

can refer to [1] or [23].

Before moving on, it is helpful to observe the following basic properties of the distance

invariants mentioned above.

Proposition 1. For any connected graph G,

(i) r(G) ≤ d(G) ≤ 2r(G);

(ii) r̂(G) ≤ r(G);

(iii) d̂(G) ≤ d(G) − 1

The first of these is easy and well known. The second is fairly obvious. For the

third, let v be a vertex not in the boundary that realizes the maximum distance to the

boundary. If this distance is at least d(G), then it is exactly d(G) by definition of diameter.

Consequently, v is a vertex of maximum eccentricity and is thus in the boundary, which

is a contradiction.

The domination number is one of the most studied simple graph invariants. Indeed,

there have been at least two books ([18, 19]) written on this invariant alone. It is the aim

of this paper to prove several new lower bounds on the domination number of graphs. A

few of these theorems were inspired by conjectures of the computer program Graffiti.pc,

written by E. DeLaViña. In addition, all of these results have analogs for total domination

(see [3, 8]). For example, in [8] it is proven that the total domination number of a graph

is at least the radius of the graph.

2. Lemmas

We start by stating a couple of lemmas that will be referred to several times in the

main section of the paper.

Given a graph G with dominating set D, a vertex v /∈ D is over-dominated by D if it

has two or more neighbors in D. The over-domination number of v with respect to D,

denoted by OD(v), is one less than the number of neighbors v has in D.

Lemma 2. Let T be a tree and let D be a minimum dominating set of T with k compo-

nents. Denote the number of edges both of whose vertices are in D by e1, the number of

edges both of whose vertices are in H = T − D by e2, and the number of edges with one

vertex in D and the other vertex in H = T − D by e3. Moreover, let j be the number of
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components of H = T − D with at least two neighbors in D (the non-trivial components

of H) and let lH be the number of components of H = T − D with exactly one neighbor

in D (the leaves of H). Then all of the following are true:

a) e1 = |D| − k

b) e2 = k − 1 −
∑

v∈H OD(v) ≤ k − 1

c) e3 = n − |D| +
∑

v∈H OD(v) ≥ n − |D|
d) 2j + lH ≤ e3 = k + j + lH − 1

e) n − lH + 2 +
∑

v∈H OD(v) ≤ 2k + |D|.

A simple proof of the above lemma was given in [9]. The lemma below appears to be

folklore (its proof is very similar to the proof of Lemma 2 in [8]).

Lemma 3. Let G be a connected graph, with n > 1. Then for any minimum dominating

set D of G, there is a spanning tree T of G such that D is a minimum dominating set of

T .

3. Theorems

The following elementary result is a rediscovery, and can be obtained quite easily, as

is shown in [18]. One of our main results, Theorem 5, is an improvement on this result

anytime the diameter is strictly less than twice the radius.

Theorem 4. Let G be a connected graph with n > 1 and diameter d. Then,

γ ≥ d + 1

3
.

Theorem 5 below is a near generalization of Theorem 4. Indeed, since the diameter can

actually equal the radius, it is sometimes twice as good as a lower bound on the domination

number (take cycles for instance). Moreover, it is similar to the well known result that

the independence number is at least the radius – originally a conjecture of Graffiti [13]

and proven independently several times [11, 12, 14, 15]. In addition, it is shown in [8] that

the total domination number (that is, the cardinality of a set of minimum order having

the property that every vertex in the graph is adjacent to a vertex in the set) is at least

the radius.

Theorem 5. Let G be a connected graph with n > 1. Then,

γ ≥ 2

3
r.
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Moreover, this bound is sharp.

Proof. Let D be a minimum dominating set of G. Form a spanning tree T of G, as

prescribed in Lemma 3, so that D is also a minimum dominating set of T . Since r(G) ≤
r(T ), 2r(T ) − 1 ≤ d(T ) (because T is a tree) and γ(T ) = γ(G) (by Lemma 2), we can

apply Theorem 4 to T and obtain the following chain of inequalities:

2r(G) − 1 ≤ 2r(T ) − 1 ≤ d(T ) ≤ 3γ(T )− 1 = 3γ(G) − 1.

�

Equality holds in the bound above for cycles with orders congruent to 0 modulo 6. On

the other hand, the tree obtained by amalgamating a pendant vertex to each vertex of a

path has radius about n
3

while it has domination number of n
2

– thus showing that the

difference between these two expressions can be made arbitrarily large.

The following theorem, proven by Lemańska in [20], follows directly from part e) of

Lemma 2.

Theorem 6. If T is a tree with l leaves, then

γ ≥ n − l + 2

3

We can use Theorem 6 together with Lemma 3 to deduce the more general result below,

which is equivalent to Theorem 6 for trees.

Theorem 7. For any connected graph G with x cut-vertices,

γ ≥ x + 2

3

Moreover, this bound is sharp.

Proof. Let D be a minimum dominating set of G. Form a spanning tree T of G, as

prescribed in Lemma 3, so that D is also a minimum dominating set of T . Let x(T )

denote the number of cut-vertices of T and note that x(T ) ≥ x, since any cut-vertex of

G is also a cut-vertex of T . Now, applying Theorem 6 to T we find,

γ(G) = γ(T ) ≥ n − l(T ) + 2

3
=

x(T ) + 2

3
≥ x + 2

3
.

�
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Lemanska shows in [20] that equality holds in Theorem 6 if and only if T is a tree such

that the distance between any two leaves is congruent to 2 modulo 3. Since for trees,

the number of cut-vertices is exactly n − l, equality holding in Theorem 6 is a sufficient

condition for equality holding in the above theorem. An example of a graph where equality

holds in Theorem 7 that is not necessarily a tree is a graph with a cut-vertex of degree

n − 1. On the other hand, since cycles have no cut-vertices, the difference between the

expressions in Theorem 7 can be made arbitrarily large.

The next theorem is a very slight improvement on Theorem 5 whenever r = r̂. For

instance, in graphs with a unique center vertex, such as odd paths, r = r̂ and the lower

bound below is 1
3

more than that achieved in Theorem 5.

Theorem 8. Let G be a connected graph with n > 1. Then,

γ ≥ 2

3
r̂(G) +

1

3
.

Moreover, this bound is sharp.

Proof. Let D be a minimum dominating set of G. Form a spanning tree T of G, as

prescribed in Lemma 3, so that D is also a minimum dominating set of T . Since T is a

tree, 2r(T ) − 1 ≤ d(T ) ≤ 2r(T ).

Suppose that 2r(T ) − 1 = d(T ). In this case, any diametral path in T is an even

path and T has a bi-center (the center is a pair of adjacent vertices). Consequently,

r̂(T ) = r(T ) − 1. Applying Theorem 4 to T ,

r̂(T ) + 1 = r(T ) =
d(T ) + 1

2
≤ 3γ(T ) − 1 + 1

2
=

3γ(G)

2
.

From this we find that,

γ(G) ≥ 2

3
r̂(T ) +

2

3
>

2

3
r̂(T ) +

1

3
.

On the other hand, suppose that 2r(T ) = d(T ). Now, any diametral path in T is an odd

path, T has a unique center vertex, and consequently r̂(T ) = r(T ). Applying Theorem 4

to T ,

r̂(T ) = r(T ) =
d(T )

2
≤ 3γ(T )− 1

2
=

3γ(G)

2
− 1

2
.

From this we find that,

γ(G) ≥ 2

3
r̂(T ) +

1

3
.
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To complete the proof we need to show that r̂(T ) ≥ r̂(G). That is, that the eccentricity

of the center of a graph is at most the eccentricity of the center of one of its spanning

trees. To this end, observe that the following chain of inequalities is valid:

r̂(G) ≤ r(G) ≤ r(T ) ≤ r̂(T ) + 1.

Suppose that r̂(G) = r̂(T )+1. This implies that all of the above are equal. In particular,

since r̂(T ) + 1 = r(T ), T is a bi-centric tree. Let {x, y} be the bi-center of T . Moreover,

let dG(p, q) denote the distance from p to q in G. Since for any vertex w ∈ G,

dG(x,w) ≤ dT (x,w) ≤ r(T ) = r(G),

we conclude that x is also a center vertex of G. Similarly, y is also a center vertex of G.

Let z be a vertex at eccentric distance from C(G) in G, and note that for any v ∈ C(G),

dG(v, z) ≥ r̂(G) = r̂(T ) + 1.

Now, because x is a center vertex of G,

r(G) = r(T ) ≥ dT (x, z) ≥ dG(x, z) ≥ r̂(G) = r(G),

whence dT (x, z) = r(T ). Similarly, dT (y, z) = r(T ). However, this is a contradiction be-

cause only one of these equations can be true for a bi-centric tree. Hence our supposition,

r̂(G) = r̂(T ) + 1, is not feasible and it must be the case that r̂(G) ≤ r̂(T ), proving our

claim and thereby proving the theorem.

To see that the bound is sharp, notice that equality holds for paths whose orders are

congruent to 3 modulo 6. On the other hand, for cycles, r̂(G) = 0 showing that the

difference can be made arbitrarily large.

�

The theorem below is sometimes a substantial improvement on Theorems 4, 5, and 8.

For instance, take a path on 2k + 1 vertices and amalgamate an endpoint of a path on

k vertices to the center vertex of the original path. This graph has d = 2k, r = r̂ = k,

and d̂ = 2k − 1. Thus, the difference between the lower bound obtained below and those

bounds obtained from the theorems mentioned above can be made arbitrarily large. On

the other hand, for odd paths, the lower bound below can be made arbitrarily less than

that obtained from any of the theorems mentioned above.
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Theorem 9. Let T be a tree with n > 1. Then,

γ(T ) ≥ 1 + d̂(T )

2
.

Moreover, this bound is sharp.

Proof. Let ve a vertex of maximum eccentricity from the boundary of T . Let d be the

diameter of T , and Pd = {v0, v1, ..., vd} be the vertices of a diametral path of T labeled

left to right such that d̂(T ) = dG(v0, ve) ≤ dG(vd, ve). If ve is on the diametral path Pd,

then d̂(T ) ≤ d
2
, and when d ≥ 2 the result follows from Theorem 4. In case d = 1, the

result is trivial. Thus, assume that ve is not on Pd. Let Pe be a path from v0 to ve. Let l

be the largest subscript such that vl is common to both Pe and Pd. Observe that since T

is a tree and dG(v0, ve) ≤ dG(vd, ve),
d
2
≥ l ≥ 1.

Let T ′ be the subtree induced by Pe and Pd. The rest of this proof consists of showing

that 1
2
(1 + d̂(T )) ≤ γ(T ′) from which the full result follows since it is straightforward to

argue that γ(T ′) ≤ γ(T ). Observe that the number of vertices of T ′ is at least 1 + d̂(T )+

d − l. Combining this observation with l ≤ d
2
, it follows that

1 + d̂(T ) +
d

2
≤ n(T ′).

Since eccentricity of the boundary is strictly less than the diameter, it follows that

3

2
(1 + d̂(T )) ≤ n(T ′).

For D a smallest dominating set of T ′ that contains no leaves, let k be the number

of components of the subgraph induced by D, let j be the number components of the

subgraph induced by T ′ − D with at least two neighbors in D, and lH be the number

components of T ′ −D with exactly one neighbor in D. By Lemma 2 parts a), b) and d),

the number of edges of T ′ is bounded above as follows,

3

2
(1 + d̂(T ))− 1 ≤ n(T ′) − 1 ≤ [γ(T ′) − k] + [k − 1 − Od] + [k + j + lH − 1],

where Od is the number of vertices of T ′ − D that are over-dominated by D. Since T ′

has 3 leaves and D contains no leaves of T ′, lH ≥ 3. It is not difficult to show that any

component of T ′ − D that is not a leaf of T ′ must have two neighbors in D, therefore

lH = 3. Now the above relation is equivalent to

(1)
3

2
(1 + d̂(T )) ≤ n(T ′) ≤ γ(T ′) − Od + k + j + 2.
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It is obvious that k ≤ γ(T ′), and by Lemma 2 part d), j ≤ k − 1. So, it follows that

3

2
(1 + d̂(T )) ≤ n(T ′) ≤ γ(T ′) −Od + 2k + 1 ≤ 3γ(T ′) + 1.

In the case that 3
2
(1 + d̂(T )) < n(T ′) or Od ≥ 1, we see that

1

2
(1 + d̂(T )) ≤ γ(T ′).

Thus, we now assume that 3
2
(1 + d̂(T )) = n(T ′) and that Od = 0 (i.e. there are no

over-dominated vertices in T ′ −D). These assumptions together with relation (1) imply,

(2)
3

2
(1 + d̂(T )) = n(T ′) ≤ γ(T ′) + k + j + 2.

Suppose that vl is not in D. Since there are no over-dominated vertices in T ′ −D, the

component in T ′ − D containing vl has at least 3 vertices and thus contributes 3 edges

to e3, where e3 is the number of edges with one vertex in D and one in T ′ − D. Since

the remaining j − 1 non-trivial components of T ′−D contribute at least two edges to e3,

2(j − 1) + 3 + lH ≤ e3. Together with the right hand side of part d) of Lemma 2 this

yields, j ≤ k − 2, which together with relation (2) yields the desired result.

To complete our proof we assume that vl is in D. In this case, let P1 be the vertices

{v0, v1, ..., vl−1} on the path Pd, let P3 be the vertices {vl+1, vl+2, ..., vd} on the path Pd

and let P2 be the remaining vertices of T ′ (this includes vl and the vertices on path Pe that

are not on Pd). Since |P1|+ |P2|+ |P3| = 3
2
(1 + d̂(T )) = n(T ′) and |P1|+ |P2| = 1 + d̂(T ),

|P3| = 1
2
(1 + d̂(T )). Observe that |P1| ≤ |P3|, otherwise we contradict that vertex vd is

not closer to ve than is v0. Also observe that |P2| ≤ |P1|, otherwise the path induced by

P2∪P3 is longer than a diametral path. Thus, it follows each of P1, P2 and P3 has exactly
1
2
(d̂(T ) + 1) vertices.

Now observe that if k < γ(T ′), then together with j ≤ k − 1 and inequality (2) the

result follows. So we assume k = γ(T ′) (that is D induces an empty subgraph). Now since

we have assumed that vl in D, none of the neighbors of vl are in D. Since the number

of vertices on paths P1 and P2 not dominated by vl differ by 1, it is easy to see that at

least one of the paths will contain a vertex that is over-dominated. This contradicts our

assumption that there are no over-dominated vertices.

To see that this bound is sharp, notice that equality holds for odd paths of order 2k +1

with a path of order k amalgamated at the center vertex. On the other hand, odd paths
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show that the difference between the two sides of the inequality can be made arbitrarily

large.

�

Although Theorem 9 was proven only for trees, we conjecture that it is true for all

simple connected graphs. In fact, we believe a similar proof to the one above can be used

to show this. To see that there are non-tree graphs for which it is true, notice it trivially

holds for all connected graphs for which every vertex is in the boundary set – cycles for

instance. Now, let the vertices of a P7 be labeled from left to right as {v1, v2, . . . , v7}
and let the vertices of a P3 be labeled {a, b, c}. Add the three edges {a, v3}, {b, v4}, and

{c, v5} and then attach a pendant vertex to b. This is a non-trivial example of a non-tree

graph for which equality holds in the conjecture below.

Conjecture 10. Let G be a connected graph with n > 1. Then,

γ(G) ≥ 1 + d̂(G)

2
.

Given a graph G, the girth, denoted g = g(G), is the minimum order of an induced

cycle of G.

Theorem 11. Let G be a connected graph with n > 1. Then,

γ ≥ 1

3
g.

Moreover, this bound is sharp.

Proof. The inequality is obviously true when g ≤ 3 so we can assume g ≥ 4. Let D

be a minimum dominating set and let C be an induced cycle of order g. Moreover, let

K = D∩C. Without loss of generality, |K| < g
3

(the inequality is trivial otherwise). Since

each vertex of K dominates three vertices of C, at most 3|K| vertices of C are dominated

by vertices from K. This leaves at most g − 3|K| vertices of C which are not dominated

by K. Finally, since no two of these un-dominated vertices of C could be adjacent to the

same vertex of D − K or a shorter cycle is present, we find;

γ ≥ |K| + (g − 3|K|) = g − 2|K| >
1

3
g,

To see that the bound is sharp, notice that equality holds for all cycles with orders

congruent to 0 modulo 6. On the other hand, the difference can be made arbitrarily large

by amalgamating paths to the vertices of a triangle. �
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The case of equality for Theorem 11 is not hard to discover. For g ≤ 3, equality holds

if and only if G has a vertex of degree n − 1 and at least one triangle.

For 4 ≤ g ≤ 6, equality holds if and only if: 1) G consists of an induced hexagon,

together with a collection of vertices S not on the hexagon, such that every vertex of S is

adjacent to one of a pair {x, y} of diametrically opposed vertices of the hexagon. 2) Each

vertex of N(x) ∩ S (resp. N(y) ∩ S) is adjacent to at most one vertex of N(y) ∩ S (resp.

N(x) ∩ S) and no other vertices of G.

For g ≥ 7, equality holds if and only if g ≡ 0 (mod 3) and G consists of a cycle of

order g whose vertices can be labeled clockwise 1, 2, . . . , g such that all non-cycle vertices

are pendants and are adjacent to vertices of the cycle whose labels come from the same

congruence class mod 3.

Recall that a matching is an independent set of edges. While much is known about

the cardinality of maximum matchings, [21], and in particular, that this number can

be computed in polynomial time, the problem of determining the order of a maximal

matching of minimum size is NP-complete [16]. In fact, this problem remains NP-complete

even when restricted to bipartite graphs.

Theorem 12. Let T be a tree where µ∗ is the cardinality of a maximal matching of

minimum size.

µ∗ ≤ γ ≤ 2µ∗.

Moreover, these bounds are sharp.

Proof. The upper bound is obvious since the vertices of any maximal matching are a

dominating set.

Let D = {d1, d2, . . . , dγ} be a minimum dominating set of T which is labeled so that di

is no further from the center of the tree than dj whenever i > j. If T is bi-central, then

choose one of these two vertices and call it the official center. Thus, lower indices indicate

greater distance from the center. Our strategy is to build a maximal matching and label

its edges in such a way that at most γ labels are used.

We build the matching M as follows. For each i – unless di is already incident to an

edge in M – add the edge div, where v is the vertex adjacent to di and closest to the

center, and label this edge ei. If the edge div is already incident to an edge of M , then

choose any other edge incident to di, that is not adjacent to an edge of M , and add that

edge to M – again labeling it ei. If neither of these is possible, then either di is incident
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to an edge of M or every edge incident to di is already adjacent to an edge of M . In this

case, ignore that vertex and move on to the next dominating vertex. Repeat this for all

dominating vertices of D in sequential order.

Now, if M is maximal, then we are done since µ∗ ≤ |M | ≤ |D| = γ. Assuming

otherwise, suppose xy is an edge independent of M (adjacent to none of the edges of M).

Moreover, without loss of generality, assume y is closer to the center than x (since they

cannot be the same distance). In this case, neither x nor y is in D – since otherwise this

edge would have been accounted for in the previous step when we built M . Now vertex

x must have a dominating vertex dj further from the center than x. Since the edge djx

was not added to M in the previous step, and x is obviously closer to the center than

any other neighbor of dj , it must be the case that an edge containing dj and one of its

neighbors, other than x, was added to M at a previous step. Hence there is no edge in M

with label j. So we can label the edge xy as ej, include it in M , and then repeat this for

any other edge independent of M . Eventually, M is maximal and at most γ labels have

been used to label its edges.

To see that these bounds are sharp, let T be a path with order n such that n ≡ 0 (mod

3). Then γ = µ∗ = n
3
. On the other hand, let T be a tree obtained by attaching a pendant

vertex to each of the n vertices of an even path. Here, γ = 2µ∗ = n
2
. Thus, equality can

hold for both upper and lower bounds and the difference between the domination number

and both bounds can be made arbitrarily large.

�

This theorem is not true for graphs in general. For instance, take two identical stars

and add an edge between each pair of corresponding leaves. This family of graphs has

γ = 2 while µ∗ can be made arbitrarily large.
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