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Abstract

The total domination number γt(G) of a simple, undirected graph G is the
order of a smallest subset D of the vertices of G such that each vertex of G is
adjacent to some vertex in D. In this paper we prove two new upper bounds
on the total domination number of a tree related to particular support vertices
(vertices adjacent to leaves) of the tree. One of these bounds improves a 2004
result of Chellali and Haynes [1]. In addition, we prove some bounds on the total
domination ratio of trees.
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1 Definitions and introduction

A subset D of the vertices of a graph G is a total dominating set if every vertex of
the graph is adjacent to a vertex of D (this concept was introduced by Cocknaye et
al. in [3]). The total domination number of a graph G is the order of a smallest total
dominating set, which we denote by γt(G). The total domination ratio of G is the
ratio of the total domination number to the order of G. Let T be a tree. A leaf of
T is a vertex of degree 1 and a support vertex of T is a vertex adjacent to a leaf. By
the isolated support vertices of T we mean the isolates (vertices of degree 0) of the
subgraph induced by the support vertices of T . A tree is said to be pruned if every
support vertex is adjacent to exactly one leaf. Let X be a subset of the vertices of
G. The neighborhood of X, denoted N (X), is the set of all vertices adjacent to some
vertex in X. The subgraph induced by X is denoted G[X].

The independence number of graph G, denoted α(G), is the order of a largest subset
of vertices in which no two are adjacent. A vertex cover of a graph G is a subset of
the vertices that contains at least one endpoint of every edge of G. The vertex cover
number of G, denoted β(G), is the order of a smallest vertex cover. It is well known
that for any n-vertex graph G, β(G) = n − α(G).

∗Work supported in part by the United States Department of Defense and used resources of the
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We prove two new upper bounds on the total domination number of a tree in this
paper, one of which improves on a 2004 result of Chellali and Haynes [1]. Their result
states that the total domination number of an n-vertex tree is at most (n + |S|)/2,
where S is the set of support vertices of the tree. Our first main result improves on
this inequality since, as it turns out, one may not need all support vertices and the
tree should be pruned before using their bound. The statement of our first main result
follows.

Theorem 1. Let T be a non-star n-vertex tree. Then

γt(T ) ≤ n + |S∗(T )|
2

− |L(T )| − |S(T )|
2

,

where L(T ) is the set of leaves of T , and S(T ) and S∗(T ) are the sets of support vertices
and isolated support vertices of T , respectively.

It is easily seen that the domination number of an n-vertex graph G is bounded
above by β(G), the vertex cover number of G, and that this upper bound does not
hold for the total domination number. However, for Vc a smallest vertex cover of G,
G[Vc] the subgraph induced by Vc, and β∗(G) the number of isolates in G[Vc], we
show the simple result that γt(G) ≤ β(G) + β∗(G) for any graph G with no isolated
vertices. Now, for a tree T , our second main result improves on the latter upper bound
by showing that one may not need all of the isolates in T [Vc]. The statement of our
second main result is as follows.

Theorem 2. Let T be an n-vertex tree with n ≥ 3. Then

β(T ) − (k − 1) ≤ γt(T ) ≤ β(T ) + |S∗(T )|,

where β(T ) is the vertex cover number of T , S∗(T ) is the set of isolated support vertices
of T and k is the minimum number of components taken over all subgraphs induced by
minimum total dominating sets.

The proofs of these bounds are deferred to the next section of this paper. Theorem
2 provides a sufficient condition for γt(T ) = β(T ).

Corollary 3. Let T be an n-vertex tree. If T has a minimum total dominating set that
induces a connected subgraph and S∗(T ) = 0, then γt(T ) = β(T ).

Note that since β(G) = n−α(G), both of the new upper bounds involve the order of
the graph and thus both suggest corollaries that provide sufficient conditions for when
the total domination number of a tree is at most half its order. In the last section of
this paper we note those conditions and present another. We also prove a general lower
bound on the total domination ratio of trees.

Lastly, note that the upper bound of Theorem 2 was conjectured by Graffiti.pc,
a conjecture-making computer program written by E. DeLaViña. The operation of
Graffiti.pc and its complete list of conjectures can be found in [5] and [6], respectively.
The upper bound of Theorem 1 is proven as an application of another of Graffiti.pc’s
conjectures, which is presented and proved first in the next section.
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2 Proofs of bounds on γt(T )

The bound proven next originated as Graffiti.pc’s conjecture number 332 in [6]. The
proof of Theorem 1 will follow as an application of this result.

Theorem 4. Let T be a n-vertex tree with n ≥ 3. Then

γt(T ) ≤ n + |S∗(T )|
2

,

where S∗(T ) the set of isolated vertices in the subgraph induced by the support vertices
of T .

Before proving the theorem, we present some definitions needed for the proof. A
branch point of a tree is a vertex of degree at least three. Each leaf of a non-path tree
has an associated nearest branch point. For any leaf p in a non-path tree T , let d(p)
be the distance from p to the nearest branch point v, and p = v1, v2, . . . vd(p), v be the
unique path from p to v in T . Call the path Lp from a leaf p to vd(p) (the last vertex
before the nearest branch point) a branch of the tree. Every non-path tree then has
exactly as many branches as leaves. Call a branch point v accessible to a leaf p if the
unique path from v to p does not contain any branch points besides v. It is clear that
every non-path tree contains a branch point which is accessible to at least two leaves.

Proof. The truth of the statement for small trees is clear, since the relation holds for
any tree with radius r = 1 on more than two vertices, and also for paths with more
than two vertices. Assume the statement is true for trees with no more than k vertices.
Let T be a tree with k + 1 vertices. Moreover, assume that T is not a path and that
r > 1, since otherwise we are done. Thus, T has branch points. Let v be a branch
point that is accessible to at least two leaves p and q. Let Lp and Lq be the branches
associated to these leaves. So Lp is the path p = p1, p2, . . . , pd(p), and Lq is the path
q = q1, q2, . . . , qd(q). Note that both pd(p) and qd(q) are adjacent to the branch point v.

Consider first the case where either of the branches Lp or Lq has three or more
vertices, say Lp (that is, d(p) ≥ 3). Let T ′ = T − {p, p2, p3} (that is, the tree induced
on V (T ) \ {p, p2, p3}). Then n(T ) = n(T ′) + 3. Since v is a branch point accessible
to p, T ′ must be a tree with more than two vertices. Let S∗(T ) and S∗(T ′) be the
sets of isolated vertices in the subgraphs induced by the support vertices of T and
T ′, respectively. By induction, γt(T ′) ≤ 1

2
[n(T ′) + |S∗(T ′)|]. Let D′ be a smallest

total dominating set of T ′. Since D = D′ ∪ {p2, p3} is a total dominating set of T ,
γt(T ) ≤ γt(T ′) + 2. Suppose |S∗(T ′)| = |S∗(T )| − 1. This can happen if no new
isolated support vertices are introduced in T ′. Thus γt(T ) ≤ γt(T ′) + 2 ≤ 1

2 [n(T ′) +
|S∗(T ′)|] + 2 = 1

2
[n(T )− 3 + |S∗(T )| − 1] + 2 = 1

2
[n(T ) + |S∗(T )|]. On the other hand,

if |S∗(T )| = |S∗(T ′)|, then since p2 is not in S∗(T ′), some vertex along the branch Lp,
or perhaps v is now in S∗(T ′). In this case, put T ′ = T − {p, p2, p3, p4}, and observe
that |S∗(T ′)| ≤ |S∗(T )|. Since D = D′ ∪ {p2, p3} is again a total dominating set of
T , we have γt(T ) ≤ γt(T ′) + 2. Then γt(T ) ≤ γt(T ′) + 2 ≤ 1

2 [n(T ′) + |S∗(T ′)|] + 2 ≤
1
2 [n(T ) − 4 + |S∗(T )|] + 2 = 1

2 [n(T ) + |S∗(T )|].
Now, assume that each of Lp and Lq has two or fewer vertices. By symmetry it

is enough to consider the cases where (1) d(p) ≤ 2 and d(q) = 1 or (2) d(p) = 2 and
d(q) = 2.

Case (1). Suppose d(p) ≤ 2 and d(q) = 1. Let T ′ = T −{q}. Let D′ be a minimum
total dominating set for T ′ that contains no leaves of T ′. Then it is easily seen that
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Figure 1: γt = 14, n = 24, |S∗| = 4 and |L| = |S| = 10

D′ must contain v, which, in T , dominates q. Thus D′ is also a total dominating set
for T , and γt(T ) ≤ γt(T ′). However, provided p2 exists, it is not an isolated support
vertex in T but may be such in T ′. Therefore, |S∗(T ′)| ≤ |S∗(T )|+1. So, by induction
γt(T ) ≤ γt(T ′) ≤ 1

2 [n(T ′) + |S∗(T )|] ≤ 1
2 [n(T ) − 1 + |S∗(T )| + 1] ≤ 1

2 [n(T ) + |S∗(T )|].
Case (2). Suppose d(p) = 2 and d(q) = 2. It can be assumed that v is not adjacent

to a leaf, that is, v is not a support vertex in T . Otherwise Case (1) could be applied.
Let T ′ = T − {q}. Let D′ be a minimum total dominating set for T ′ that contains
no leaves of T ′. In particular, D′ does not contain q2. Since D = D′ ∪ {q2} is a total
dominating set of T , we have γt(T ) ≤ γt(T ′) + 1. Since v is not a support vertex
(by assumption), q2 is an isolated support vertex in T . All isolated support vertices
in T ′ are also isolated support vertices in T . Thus, |S∗(T )| = |S∗(T ′)| + 1. So, by
induction γt(T ) ≤ γt(T ′)+1 ≤ 1

2
[n(T ′)+ |S∗(T ′)|]+1 = 1

2
[n(T )−1+ |S∗(T )|−1]+1 ≤

1
2 [n(T ) + |S∗(T )|].

Proof of Theorem 1. Let T ′ be the pruned tree formed by deleting all but one leaf from
each support vertex of T . Then clearly, n′ = n − (|L(T )| − |S(T )|), γt(T ) = γt(T ′),
|S(T )| = |S(T ′)| = |L(T ′)| and |S∗(T )| = |S∗(T ′)|. Now, by Theorem 4 and the latter
observations we see

γt(T ) = γt(T ′) ≤ n′ + |S∗(T ′)|
2

=
n − (|L(T )| − |S(T )|) + |S∗(T )|

2

=
n + |S∗(T )|

2
−

|L(T )| − |S(T )|
2

.

Label a path on 5 vertices left to right 0 − 1 − 2 − 3 − 4 with 0 and 4 the labels
of the endpoints. To see that the bound in Theorem 1 is sharp for infinitely many
trees, begin by joining the endpoint of a path on 2 vertices to vertex 1 of the labeled
path on 5 vertices. Call the resulting tree H. Now for m ≥ 1, let T (m) be the union
of m copies of H and a path on 3 vertices, such that one endpoint of the path on 3
vertices is joined to each of the vertices labeled 2 in the m copies of H (see Figure 1
for T (3)). It is easily verified that for m ≥ 1, γt(T (m)) = 4m + 2, n(T (m)) = 7m + 3,
|S∗(T (m))| = m + 1 and |S(T (m))| = |L(T (m))| = 3m + 1.
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Theorem 5. Let G be an n-vertex graph with no isolated vertices such that n ≥ 2 and
let Vc be a smallest vertex cover of G. Then

γt(G) ≤ |Vc| + β∗(G),

where β∗(G) be the number of isolates in G[Vc].

Proof. Let I = V (G) − Vc. Since I is a maximum independent set, every vertex of Vc

must have a neighbor in I. Let D∗ be a smallest subset of vertices of I that dominate
the isolated vertices of G[Vc]. It is easily seen that |D∗| ≤ β∗(G) and Vc ∪D∗ is a total
dominating set. Thus, γt(G) ≤ |Vc ∪ D∗| ≤ |Vc| + |D∗| ≤ |Vc| + β∗(G).

The lemma below is proven as Lemma 1 in [4]. We use it to prove the lower bound
of Theorem 2.

Lemma 6. Let T be a tree with dominating set D. Then the subgraph induced by
V (T )−D has at most k−1 edges, where k is the number of components of the subgraph
induced by D.

Proof of Theorem 2. Let D be a minimum total dominating set. Let D′ be a smallest
set of vertices in V (T )−D that cover the edges of the subgraph induced by V (T )−D.
Next put C = D ∪ D′. Since C is clearly a vertex cover and by Lemma 1 we see
|D′| ≤ k − 1, it follows that β(T ) ≤ |C| ≤ (k − 1) + γt(T ).

To show the upper bound, let I be a maximum independent set containing the
leaves of T . Then α(T ) = |I| and Vc = V − I is a vertex cover for T . Observe that
by choice of I the support vertices S of T are contained in Vc. We can assume that
T [Vc] has at least one isolated vertex, say x∗, that is not a support vertex, otherwise
the result follows from Theorem 5.

Next we will partition the vertices of T as follows. Let L1 = {x∗} and L2 = N (x∗)
(we can visualize that the tree is rooted at x∗). Observe that L1 ⊆ Vc and L2 ⊆ I.
Now let

L3 = [N (L2) − L1] ∪ CN(L2)−L1 ,

where CN(L2)−L1 = {v ∈ Vc|v is in a component of Vc with a vertex of N (L2) − L1}.
In other words, L3 contains the neighborhood of L2 not already placed into a block of
our partition and also the vertices of all components of Vc that contain these neighbors
(see Figure 2 for an illustration of the partitioning). Next we put L4 = N (L3) − L2

and observe that L4 ⊆ I, since L3 ⊆ Vc.
We continue this process so that at some odd number step 2k + 1, we put

L2k+1 = [N (L2k) − L2k−1] ∪ CN(L2k)−L2k−1 ,

where CN(L2k)−L2k−1 = {v ∈ Vc|v is in a component of Vc with a vertex N (L2k) −
L2k−1}, and we put L2k+2) = N (L2k+1) − L2k. Since T is a finite tree, this pro-
cess will terminate at some mth step where m is even and composed only of leaves.
This partition {L1, L2, ..., Lm} of V (T ) clearly has the following properties.

a. I = L2 ∪ L4 ∪ ...∪ Lm−2 ∪ Lm.

b. Vc = L1 ∪ L3 ∪ ...∪Lm−3 ∪ Lm−1.

c. For i > 1, if v ∈ Li has a neighbor in Li−1, then it has only one neighbor in Li−1.
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Figure 2: Partitioning of V (T ) in the proof of Theorem 2.

Now let D = Vc. If D is a total dominating set, then the result holds since γt(T ) ≤
|D| = β(T ). Otherwise, we alter D as follows. If D contains isolated vertices of T [Vc]
that are support vertices of T , then let D∗ be a smallest subset of vertices of I − L
that dominate these isolated support vertices. Clearly |D∗| ≤ |S∗|. Put the vertices of
D∗ into D and observe that

|D| ≤ β(T ) + |S∗|.

If D is now a total dominating set, then the result holds since γt(T ) ≤ |D| ≤ β(T )+|S∗ |.
In case D is not yet a total dominating set, we alter D without increasing its order as
follows. In decreasing order we visit each Li with odd index i where 3 ≤ i ≤ m − 1.
Thus we begin with Lm−1 and observe that if there is an isolate of T [Vc] in Lm−1

then it is a support vertex and some vertex of D∗ (which we previously added to D)
is adjacent to it. Now for each non-support isolate x of T [Vc] that is in Lm−3, if all of
the neighbors of x that are in Lm−2 are dominated by Lm−1 ∩ D, then remove x from
D and add to D its unique neighbor in Lm−4, otherwise we leave x in D. Continue
this way for each odd i in decreasing order. That is in general for Li where i is odd,
if a non-support isolate x of T [Vc] is in Li, and all of the neighbors of x that are in
Li+1 are dominated by Li+2 ∩ D, then remove x from D and add its unique neighbor
in Li−1 to D. Otherwise we leave x in D. This process terminates after i = 3. Now if
some vertex of L2 is in D then we are done, otherwise remove x∗ from D and replace
it with one of its neighbors. Note that in either case, x∗ will be dominated by D.

It is clear that the order of D has not increased, thus, once we show that D is a
total dominating set, the result follows. Since D contains all support vertices of T and
contains D∗, it is clear that the support vertices and the leaves of T are dominated.
Moreover, the non-isolated vertices of Vc are in D and thus also clearly dominated by
D. What remains to be verified is that non-support isolates of Vc and non-leaf vertices
of the independent set I are dominated by D. Let xi be a non-support isolate of Vc

and suppose that it is in Li, where i is odd and 1 < i < m − 1. If xi is not in D (that
is it was removed), then its neighbor in Li−1 must be in D and thus xi is dominated
by D. On the other hand, if xi is in D (that is it did not get removed from D), then
at least one of its neighbors, say y, in Li+1 is not dominated by Li+2 ∩ D. But the
vertices of Li+2 are in the vertex cover and we have assumed y is not a leaf (since xi is
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not a support), so y must be adjacent to a vertex of Li+2. Thus, y must be adjacent
to an isolate in Li+2 that was removed from D. But in this case y must have been
placed in D and thus xi is dominated by D. Finally, let w be a non-leaf vertex of the
independent set I and suppose that it is in Lj where j is even and 2 ≤ i < m. The only
neighbors of w are in Vc. If w is adjacent to a non-isolate of Vc, then it is dominated
by D. Now assume w is only adjacent to isolates of Vc, and let z ∈ Vc be its neighbor
in Lj−1. If z is not in D, then w must be dominated by Lj+1, otherwise z would still
be in D.

0 1 2 3 4 9 128

Figure 3: γt(T2(2)) = 9, n(T2(m)) = 17, α(T2(m)) = 10 and |S∗(T2(m))| = 2

To see that the bound in Theorem 2 is sharp for infinitely many trees and sometimes
better than the bound in Theorem 1, begin with a path P5m+3 on 5m + 3 vertices for
m ≥ 1 and assume that the vertices are labeled left to right 0−1−2−3− ...− (5m+2)
with 0 and 5m + 2 the labels of the endpoints. Now for each vertex of P5m+3 whose
label is congruent to 3 modulo 5 or to 4 modulo 5 identify it with an endpoint of a
path on 2 vertices. Call the resulting tree T2(m) (see Figure 3 for T2(2)). It is easily
verified that for m ≥ 1, γt(T2(m)) = 3m + 3, n(T2(m)) = 7m + 3, β(T2(m)) = 3m + 1
and |S∗(T2(m))| = 2.

3 The total domination ratio of a tree

It is well known that the total domination number of a connected graph is at most
two-thirds its order (see [3]). It is also known that there are many trees whose total
domination number is equal to two-thirds the order. In this section, we discuss new
upper and lower bounds for the total domination ratio of trees. From our first two
results we get as a special case that trees with no isolated support vertices have their
total domination ratios bounded above by a half.

Theorem 7. [3] For any connected n-vertex graph G with n ≥ 3, γt(G) ≤ 2
3
n.

We begin with the conditions suggested by our theorems.

Corollary 8. Let T be an n-vertex non-star tree with L(T ) and S(T ) the sets of leaves
and support vertices, respectively. If |L(T )| ≥ |S(T )| + |S∗(T )|, then γt(T ) ≤ n

2 .

Proof. This follows easily from Theorem 1.

Corollary 9. Let T be an n-vertex tree with S∗(T ) its set isolated vertices in the
subgraph induced by support vertices. If α(T ) − |S∗(T )| ≥ n

2 , Then γt(T ) ≤ n
2 .

Proof. This follows easily from Theorem 2.
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Figure 4: n = 40, |N (S)| = 34, |S| = 14 and γt = 18

A

N’(S) 

A’

SS*

L

A*

S’

N’’(S) B*

Figure 5: Partition of the vertices in the proof of Theorem 10.

Inspired by the sufficient conditions provided by Corollaries 8 and 9, Graffiti.pc was
queried specifically for such conditions. The next theorem was among its conjectures.
The graph in Figure 4 has total domination number less than half its order, although
it does not satisfy either of the conditions presented thus far. However, it does satisfy
the condition in the next theorem.

Theorem 10. Let T be an n-vertex tree with n ≥ 4.

If |N (S)| − |S| ≥ n
2 , then γt(T ) ≤ n

2 ,

where S = S(T ) is the set of support vertices of T and N (S) the neighborhood of S.

Proof. Let S∗ be the set of isolated vertices in the subgraph induced by the support
vertices S of T , and put S′ = S − S∗. The non-leaf and non-support neighbors of S
we denote by N ′(S), that is N ′(S) = N (S) − (L ∪ S). Clearly L, N ′(S) and S′ are
pairwise disjoint and N (S) = L ∪ S′ ∪ N ′(S). Next, let B∗ be a smallest subset of
N ′(S) that dominates the vertices in S∗; clearly, |D∗| ≤ |S∗|. Let N ′′(S) = N ′(S)−B∗

and observe that
N (S) = L ∪ N ′′(S) ∪ B∗ ∪ S′. (1)

Moreover, since L, N ′′(S), B∗ and S′ are pairwise disjoint,

|N (S)| = |L|+ |N ′′(S)| + |B∗| + |S′|. (2)

Let A = (V (T ) − N (S)) − S∗. Then by our partition of the vertices of T and (1) it
follows that V (T ) − N (S) = A ∪ S∗, and so

|V (T )| − |N (S)| = |A| + |S∗|. (3)

By assumption and (3) we see

n

2
≥ |V (T )| − (|N (S)| − |S|) = |V (T )| − |N (S)| + |S| = |A| + |S∗|+ |S|,

8



2 5 8 11

Figure 6: γt(T4) = 10 and n(T4) = 26

which yields
|A| + |S∗|+ |S| ≤ n

2
. (4)

Lastly, let A∗ be the isolates in the subgraph induced by A, and put A′ = A − A∗.
Let D∗ be the smallest subset of N ′(S) that dominates the vertices of A∗. Put D =
D∗∪A′∪B∗∪S. It is easily seen that D is a total dominating set. Thus, by construction
of D, the observation |D∗| ≤ |A∗|, our partition of A and (4), respectively, we see that

γt(T ) ≤ |D| ≤ |D∗| + |A′|+ |B∗| + |S|
≤ |A∗| + |A′| + |S∗| + |S|
≤ |A|+ |S∗| + |S|

≤ n

2
.

Theorem 12 and its corollary provide a general lower bound on the total domination
ratio of trees. Theorem 12 uses another result of Chellali and Haynes [2].

Theorem 11. [2] Let T be an n-vertex tree with n > 2. Then

γt(T ) ≥ n−|L(T )|+2
2 ,

where L(T ) is the set of leaves.

Theorem 12. Let T be an n-vertex tree. Let m be a positive constant such that
mγt(T ) ≥ |L(T )|. Then

γt(T )
n > 1

m+2 ,

where L(T ) is the set of leaves.

Proof. Clearly, by inspection, n > 2. By Theorem 11, we have 2γt(T ) ≥ n−|L(T )|+2 >
n − |L(T )|. Now by the choice of m,

1
m + 2

=
γt(T )

(m + 2)γt(T )
=

γt(T )
mγt(T ) + 2γt(T )

<
γt(T )

|L(T )|+ n − |L(T )| =
γt(T )

n
.

Corollary 13. Let T be an n-vertex tree. Let m be the average number of leaves per
support vertex. Then

γt(T )
n > 1

m+2 .
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Corollary 13, for instance, implies that the total domination ratio of a pruned tree
is more than 1

3 . To see that a ratio of 1
3 is best possible for pruned trees, begin with

a path P on 3m + 2 vertices with m ≥ 3. Label the vertices of P left to right so that
0 and 3m + 1 are the endpoints. Now, identify a non-endpoint of a path on 4 vertices
with each vertex of P that is labeled k ≡ 2(mod 3). Let Tm be the resulting pruned
tree; see Figure 6 for T4. It is easy to see that n(Tm) = 6m + 2 and γt(Tm) = 2m + 2.
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