TOTAL DOMINATION OF AT MOST CUBIC CONNECTED GRAPHS

David Jenkins Advisor: Dr. DeLaViña

DEFINITIONS

Domination number (γ) Total Domination number (γ_t) Two Domination number (γ_2) Three Domination number (γ_3)

TOTAL DOMINATION

Cockayne, E.J., Dawes, R.M., Hedetniemi,
S.T., *Total domination in graphs*. Networks, 10:211-219, 1980.

GRAFFITI.PC

Computer program written by Dr. Ermelinda DeLaViña

- Creates conjectures for specific graph parameters
 - Total domination for at most cubic connected graphs

PREVIOUS WORK SUMMER 2010

Graph theory directed study

- Introduced to terms, notation, and proof techniques
- First conjectures from Graffiti.pc $\gamma_t = \Delta(G)$

 $\gamma_t \leq$ The number of minimum degree vertices

SIMPLE COUNTEREXAMPLES

 $\gamma_t = \Delta(G)$ $\gamma_t \leq \# of \delta(v)$

 $\gamma_t = 2$

 $\gamma_t = 2$

 $\Delta(G) = 1 \qquad \# of \delta(v) = 1$

KNOWN FACTS

•
$$\gamma_t \leq \frac{2}{3}n$$

- Cockayne, E.J., Dawes, R.M., & Hedetniemi, S.T., *Total domination in graphs*. Networks 10:211-219, 1980.
- Total domination not bounded by 2 domination
 - Paths and cycles are some exceptions
- Interestingly Graffiti.pc conjectured the following:

MAJOR FOCUS

• **Conjecture.** Let *G* be a connected at most cubic graph. Then

$$\gamma_t(G) \le 2* \left\lfloor \frac{\gamma_3(G)}{2} \right\rfloor$$

• Simplified as $\gamma_t \leq \gamma_3$

Several partial results have been found

PARTIAL RESULTS

• If
$$\frac{2}{3}n \leq \gamma_3$$
, then $\gamma_t(G) \leq \gamma_3(G)$

• If G is at most cubic then,
$$\frac{n}{2} \leq \gamma_3$$

MY CONJECTURE

Conjecture (Jenkins) Let G be an at most cubic connected *n*-vertex graph. Then G is 3-regular if and only if $\frac{n}{2} = \gamma_3(G)$

The implication

if **G** is 3-regular, then
$$\frac{n}{2} = \gamma_3(G)$$

Is false as seen in the graph above.

ON THE OTHER HAND

• **Proposition.** Let G be an at most cubic connected n-vertex graph. If $\gamma_3(G) = \frac{n}{2}$, then G is 3-regular

Follow-up question

For a graph that is not restricted to at most cubic, the above graph is simple counterexample

ANOTHER PARTIAL RESULT

• **Proposition**. Let D_3 be a smallest 3dominating set for G. If there is only one $v \in D_3$ not dominated by a vertex in D_3 then $\gamma_t \leq \gamma_3$

IDEA OF 'SWAPPING'

Total dominating set 3-dominating set

ISSUES WITH 'SWAPPING'

Error set 3-dominating set

CLOSING COMMENTS

- Disproved 25 different conjectures from Graffiti.pc
- Proved several partial results for $\gamma_t \leq \gamma_3$
- Found a partial result in a 2010 paper of Chellali et. Al, If G is an at most cubic tree different than a star, then $\gamma_3 \ge \gamma_t + 2$

• Future work could improve 'swapping' technique

THANK YOU