TOTAL DOMINATION OF AT MOST CUBIC CONNECTED GRAPHS

David Jenkins
Advisor: Dr. DeLaViña

DEFINITIONS

Domination number (γ)

Total Domination number $\left(\gamma_{t}\right)$

Two Domination number $\left(\gamma_{2}\right)$
Three Domination number $\left(\gamma_{3}\right)$

TOTAL DOMINATION

- Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T., Total domination in graphs. Networks, 10:211-219, 1980.

GRAFFITI.PC

- Computer program written by Dr. Ermelinda DeLaViña
- Creates conjectures for specific graph parameters
- Total domination for at most cubic connected graphs

PREVIOUS WORK summer 2010

- Graph theory directed study
- Introduced to terms, notation, and proof techniques
- First conjectures from Graffiti.pc $\gamma_{t}=\Delta(G)$

$\gamma_{t} \leq$ The number of minimum degree vertices

SIMPLE COUNTEREXAMPLES

$$
\gamma_{t}=\Delta(G)
$$

$$
\gamma_{t} \leq \# o f \delta(v)
$$

$\gamma_{t}=2$

$$
\gamma_{t}=2
$$

$\Delta(G)=1$ $\# o f \delta(v)=1$

KNOWN FACTS

- $\gamma_{t} \leq \frac{2}{3} n$
- Cockayne, E.J., Dawes, R.M., \& Hedetniemi, S.T., Total domination in graphs. Networks 10:211-219, 1980.
- Total domination not bounded by 2 domination
- Paths and cycles are some exceptions
- Interestingly Graffiti.pc conjectured the following:

MAJOR FOCUS

- Conjecture. Let G be a connected at most cubic graph. Then

$$
\gamma_{t}(G) \leq 2 *\left\lfloor\frac{\gamma_{3}(G)}{2}\right\rfloor
$$

\odot Simplified as $\gamma_{t} \leq \gamma_{3}$

- Several partial results have been found

PARTIIAL RESULTS

- If $\frac{2}{3} n \leq \gamma_{3}$, then $\gamma_{t}(G) \leq \gamma_{3}(G)$
- If G is at most cubic then, $\frac{n}{2} \leq \gamma_{3}$

MY CONJECTURE

Conjecture (Jenkins) Let G be an at most cubic connected n-vertex graph.
Then G is 3 -regular if and only if $\frac{n}{2}=\gamma_{3}(G)$

The implication

$$
\text { if } G \text { is } 3 \text {-regular, then } \frac{n}{2}=\gamma_{3}(G)
$$

Is false as seen in the graph above.

ON THE OTHER HAND

- Proposition. Let G be an at most cubic connected n-vertex graph. If $\gamma_{3}(G)=\frac{n}{2}$, then G is 3-regular

Follow-up question

For a graph that is not restricted to at most cubic, the above graph is simple counterexample

ANOTHER PARTIAL RESULT

\odot Proposition. Let D_{3} be a smallest 3dominating set for G. If there is only one $v \in D_{3}$ not dominated by a vertex in D_{3} then $\gamma_{t} \leq \gamma_{3}$

IDEA OF 'SWAPPING'

Total dominating set
3-dominating set

ISSUES WITH 'SWAPPING’

Error set
3-dominating set

CLOSING COMMAENTS

- Disproved 25 different conjectures from Graffiti.pc
- Proved several partial results for $\gamma_{t} \leq \gamma_{3}$
- Found a partial result in a 2010 paper of Chellali et. $A l$, If G is an at most cubic tree different than a star, then $\gamma_{3} \geq \gamma_{t}+2$
- Future work could improve 'swapping’ technique

THANK YOU

