Methods of Proofs

Recall we discussed the following methods of proofs:

- Vacuous proof
- Trivial proof
- Direct proof
- Indirect proof
- Proof by contradiction
- Proof by cases.

A vacuous proof of an implication happens when the hypothesis of the implication is always false.

Example 1: Prove that if x is a positive integer and $x = -x$, then $x^2 = x$.

An implication is trivially true when its conclusion is always true.

A declared mathematical proposition whose truth value is unknown is called a conjecture.

One of the main functions of a mathematician (and a computer scientist) is to decide the truth value of their claims (or someone else's claims).

If a conjecture is proven true we call is a theorem, lemma or corollary; if it proven false, then usually discarded.

A proof is a sequence of statements bound together by the rules of logic, definitions, previously proven theorems, simple algebra and axioms.

Definition: An integer *n* is even if there exists an integer *k* such that $n = 2k$. An integer *n* is odd if there exists an integer *k* such that $n = 2k + 1$.

Example: Use the definition of odd to explain why 9 is odd, but why 8 is not odd. Axiom (Closure of addition over the integers): If a and b are integers, then $a + b$ is an integer.

Axiom (Closure of multiplication over the integers): If a and b are integers, then $a \cdot b$ is an integer.

Example 2: (fill in the blanks)

- (i) Property of Closure of \triangle over the set of numbers S: If a and b are $\qquad \qquad$, then \qquad is
- (ii) True or False: The integers have closure with respect to subtraction.

Example 3:

i. Write the proposition "the product of two irrational numbers is irrational" in symbolic logic notation.

ii. Prove or disprove that the product of two irrational numbers is irrational.

Example 4: Lemma 1. If *n* is even, then n^2 is even.

- i. Write the proposition in symbolic logic notation.
- ii. Write the contrapositive of the implication in symbolic logic notation
- iii. Proof:

Example 5: Lemma 2. If n^2 is even, then *n* is even.

i. Write the proposition in symbolic logic notation (with the necessary quantifiers).

ii. Proof:

Theorem 1: An integer *n* is even if and only if n^2 is even.

Proof: If *n* is even, then n^2 is even is true by Lemma 1. The converse, if n^2 is even, then n is even is true by Lemma 2. Hence the biconditional statement n is even if and only if n^2 is even is true.

Example 6: Prove that the sum of two odd integers is even. i.e. If p and q are odd integers, then $p + q$ is an even integer.

- i. Write the proposition in symbolic logic notation.
- ii. Proof:

Summary. If we are proving $p \rightarrow q$, then

A direct proof begins by assuming $p \mid$ An indirect proof begins by	
is true.	assuming $\neg q$ is true.
until we conclude q .	until we conclude $\neg p$.

An example of a proof by contradiction.

Example 7: Prove that $\sqrt{2}$ is irrational.

Proof: Assume by way of contradiction that can be represented as a quotient of two integers p/q with $q \neq 0$. Further, we assume that p/q is in lowest terms, i.e. we assume that

The integers p and q have no common factor. (1)

Thus, by assumption $\sqrt{2} = p/q$, and now squaring both sides yields

$$
2 = \frac{p^2}{q^2} \qquad \text{or} \qquad p^2 = 2q^2 \qquad (2)
$$

This implies that p^2 is even, and by Theorem 1, p must also be even. So we write $p =$ 2k for k some integer, substitute into the second equation of (2) , and by cancellation we see that

$$
q^2 = 2k^2. \tag{3}
$$

This says that q^2 is even, and again by Theorem 1, q must also be even. From statements (2) and (3), it follows that

 p and q both have 2 as a common factor. (4)

Statements (1) and (4) are contradictory. Thus, $\sqrt{2}$ is not a rational fraction. **Summary.** If we are proving $p \rightarrow q$, then

Example 8: Prove that if $3n + 2$ is odd, then *n* is odd.

- i. Write the proposition in symbolic logic notation.
- ii. Write the negation of the proposition in symbolic logic notation.
- iii. Proof:

Definition. Let x be a real number. Then $|x| =$ $\overline{\mathcal{L}}$ ∤ \int $-x$ if $x <$ ≥ if $x < 0$ if $x \geq 0$ x if x x if $x \ge 0$

An example of a proof by cases: **Example 9:** Prove if x is a real number, then $|x| = |x|$. **Definition.** A function $f: A \rightarrow B$ is *one-to-one* if and only if $\forall x \forall y (f(x) = f(y) \rightarrow x = y),$ which is logically equivalent to its contrapositive $\forall x \forall y \ (x \neq y \rightarrow f(x) \neq f(y)).$

Example 10: Prove that the real valued function $f(x) = x + 1$ is one-to-one.

Example 11: Prove the following statements about an integer x are equivalent.

- (i) $3x+2$ is even
- (ii) $x+5$ is odd
- (iii) x^2 is even