Katarina Jegdic

Associate Professor

Department of Computer and Mathematical Sciences

University of Houston-Downtown

One Main Street, Houston, TX 77002

 

Contact Information:

Office: S726

E-mail: jegdick@uhd.edu

 

Research:

  • K. Jegdic,  Analysis of a spacetime discontinuous Galerkin method for systems of conservation laws, Ph.D. thesis, University of Illinois at Urbana-Champaign (2004).
  • K. Jegdic, R. Jerrard, Convergence of an implicit spacetime Godunov finite volume method for a class of hyperbolic systems, SIAM Journal of Numerical Analysis, Vol. 44, Issue 5 (2006), 1921-1953.
  • K. Jegdic, Computation on nonclassical shocks using a spacetime discontinuous Galerkin method, IEEE-CS ACM Digital Library, Proceedings of Richard Tapia Conference on Celebrating Diversity in Computing, ISBN:1-59593-257-7, Albuquerque, NM (2005), 28-31.
  • K. Jegdic, B. L. Keyfitz, S. Canic, Transonic regular reflection for the unsteady transonic small disturbance equation - details of the subsonic solution, Free and Moving Boundaries Analysis, Simulation and Control: Roland Glowinski, Jean-Paul Zolesio (Eds.), Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, Vol. 252 (2007), 125-165.
  • K. Jegdic, B. L. Keyfitz, S. Canic, Transonic regular reflection for the nonlinear wave system, Journal of Hyperbolic Differential Equations, Vol. 3, No. 3 (2006), 443-474.
  • K. Jegdic, B. L. Keyfitz, S. Canic, A Riemann problem for the isentropic gas dynamics equations, Proceedings of the MSRI/AWM Workshop “The legacy of Ladyzhenskaya and Oleinik”, Berkeley, CA (2006), 165-170.
  • K. Jegdic, Review of “Hyperbolic conservation laws in continuum physics" by C. Dafermos, SIAM Review, Vol. 48, no. 3 (2006), 614-615.
  • K. Jegdic, Remarks on a free boundary problem for the nonlinear wave system: weak regular reflection, Dynamics of Continuous, Discrete and Impulsive Systems, Series A Mathematical Analysis 14, Advances in Dynamical Systems, suppl. S2 (2007), 168-173.
  • K. Jegdic, Numerical solutions to a two-dimensional Riemann problem for gas dynamics equations, Proceedings of the 11th WSEAS International Conference on Applied Mathematics, ISBN: 978-960-8457-60-7, ISSN: 1790-5117, Dallas, TX (2007), 237-242.
  • K. Jegdic, Numerical approximations of Riemann solutions to multiphase flows used in petroleum engineering, Proceedings of the 9th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering, ISBN: 978-960-6766-11-4, ISSN: 1790-5117, The University of West Indies at St. Augustine, Trinidad & Tobago (2007), 39-44.
  • K. Jegdic, A quasi-one-dimensional Riemann problem for the isentropic gas dynamics equations, Proceedings of the 9th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering, ISBN: 978-960-6766-11-4, ISSN: 1790-5117, The University of West Indies at St. Augustine, Trinidad & Tobago (2007), 210-215.
  • K. Jegdic, Weak regular reflection for the nonlinear wave system, Journal of Hyperbolic Differential Equations, Vol. 5, Issue 2 (2008), 399-420.
  • J. Chen, C. Christoforou, K. Jegdic, Rarefaction wave interaction for the unsteady transonic small disturbance equations, Proceedings of The 15th American Conference on Applied Mathematics, ISBN: 978-960-474-071-0, ISSN: 1790-5117, University of Houston – Downtown, Houston, TX (2009), 211-216.
  • J. Chen, C. Christoforou, K. Jegdic, Existence and uniqueness analysis of a detached shock problem for the potential flow, Nonlinear Analysis: Theory, Methods and Applications, Volume 74, Issue 3 (2011), 705-720.
  • K. Jegdic, Teaching Partial Differential Equations Using Technology, Proceedings of the 23rd International Conference on Technology in Collegiate Mathematics (ICTCM), Denver, CO (2011).
  • K. Jegdic, Remarks on strong regular reflection for the isentropic gas dynamics equations, Proceedings of the 2011 Mathematics & Engineering Conference, ISSN: 2160-2573, Honolulu, HI (2011).
  • K. Jegdic, B. L. Keyfitz, S. Canic, A free boundary value problem for the isentropic gas dynamics equations – transonic regular reflection, submitted.