- 1. Write the contrapositive a "if *n* is an even integer, then n^2 is an even integer."
- 2. Write the converse a "if *n* is an even integer, then n^2 is an even integer."
- 3. Write the contrapositive a "if n^2 is an even integer, then *n* is an even integer."
- 4. Write the converse a "if n^2 is an even integer, then *n* is an even integer."
- **5.** The negation of an implication.
 - **a.** In part b. of this exercise we will prove the statement $\neg(p \rightarrow q) \equiv p \land \neg q$, but first fill in the following blanks with one of the words *negation*, *conjunction, implication, hypothesis* or *conclusion* in order to describe the significance of the equivalence $\neg(p \rightarrow q) \equiv p \land \neg q$.

The negation of an ______ *is equivalent to the* ______ *of the hypothesis and the* ______ *of the conclusion of the hypothesis.*

b. Provide the reasons (names of logical equivalences) for the proof. $\neg(p \rightarrow q) \equiv \neg(\neg p \lor q)$ by

$\neg (p \rightarrow q) \equiv \neg (\neg p \lor q)$	by
$\equiv \neg \neg p \land \neg q$	by
$\equiv p \land \neg q$	by

c. Let p denote the statement that "n is an even integer", and

let q be the statement that " n^2 is an even integer".

Using the above English meaning of *p* and *q*, write the English equivalent of the statement $\neg(p \rightarrow q) \equiv p \land \neg q$.

- **d.** Write the English equivalent of the negation of the statement "if *n* is divisible by 3, then n^2 is divisible by 3" in the two different ways proposed in part c.
 - i.
 - ii.
- e. Write the English equivalent of the contraposition of the statement "if *n* is divisible by 3, then n^2 is divisible by 3" in the two different ways proposed in part c.

f. Prove (using the laws of logic) that the following proposition is a tautology (give the reasons at each step). $\neg(p \rightarrow q) \lor \neg(p \land \neg q)$

g. If the truth-value of $p \land \neg q$ is false, then what is the truth-value of $(p \rightarrow q)$? Explain your reasoning.