Ch 2.1 Sets

Terms: The <u>objects</u> in a set are called the <u>elements</u>, or <u>members</u>, of the set. A set is said to contain its elements.

Notation: We use upper case letters to denote sets, e.g. A, B, C, X,...

Example: For the set $A = \{a, b, 3, 5\}$. The members of this set are _____.

Def: <u>**Two sets are equal**</u> if and only if they have the same elements. **Examples**: Let $A = \{1, 2, 5\}, B = \{1, 2, 3\}$, and $C = \{5, 2, 1\}$. Sets A and C are equal (note the order does not matter), but no other combinations in this example are equal.

Notation/Definitions:

- 1. \in is read as "<u>is an element of</u>". Example: Let A = {1, 2, 5}. 1 \in A, 2 \in A, but 3 \notin A.
- 2. If a set is finite or has a pattern then the set can be described by listing the elements. But a more general way to describe a set is by the use of <u>set builder notation</u>.

Examples:

- i. R = {x | x is a real number } (The braces indicate a set and the vertical bar is read as "such that")
 This is read as " the set of all x such that x is a real number "
- ii. O = {x | x is an odd positive integer less than 10}
 This is read as " the set of all x such that x is an odd positive integer less than 10 ".
 (Note this set could have been listed O = { 1, 3, 5, 7, 9 }.)
- 3. The <u>universal set</u>, which we will denote as *U*, is the set of all objects under consideration in a given problem.
- 4. <u>A set A is said to be a subset of set B</u> if and only if every element of *A* is also an element of *B*.

In notation this is: $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$. *A* is **not a subset** of *B* in notation: $A \not\subset B \leftrightarrow \exists x (x \in A \land x \notin B)$ Proof:

$A \not\subset B \Leftrightarrow$	
$\neg \forall x (x \in A \to x \in B) \Leftrightarrow$	By the negation of the
	definition of subset
$\exists x \neg (x \in A \rightarrow x \in B) \Leftrightarrow$	By the negation of the
	universal quantifier.
$\exists x \neg (x \notin A \lor x \in B) \Leftrightarrow$	Since $(p \rightarrow q) \Leftrightarrow (\neg p \lor q)$
$\exists x (x \in A \land x \notin B)$??

End of Proof.

Examples: Let $A = \{a, b, c\}$, $B = \{a, b, c, d\}$, $C = \{b, c, d\}$, and $D = \{c, b, a\}$. Fill in the blank with the subset symbol or the not a subset of symbol.

А	В
С	В
А	С
D	В
D	А

 Ø represents the <u>empty set</u> or <u>null set</u>, which is defined as the set with no elements.

Fact: Let the universal set be the collection of all sets.

 $\forall A, \ \emptyset \subseteq A.$

Proof:

6. Corollary. A nonempty set has at least two subsets.

Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say S is a <u>finite set</u> and n is the <u>cardinality</u> of S. The cardinality of S is denoted by |S|. A set is said to be <u>infinite</u> if it is not finite.

Examples: 1. Let $A = \{1, 2, 5\}$. Then |A| = 3.

 Let S be the set of letters in the English alphabet. Then |S| = 26.
 |Ø| = ______
 |{1000}| = ______
 |{1000}| = ______
 |{∞}| = ______
 |{∞}| = ______
 |{1,2,...,1000}| = ______
 |{1,2,1000}| = ______

Definition: Given a set S, the <u>power set of S</u> is the set of all subsets of the set S. The power set of S is denoted by P(S).

Fact to be proven later: If |A| = n, then $|P(A)| = 2^n$.

Examples:

- 1. Let $A = \{a, b, c\}$. Describe P(A). **Solution**: $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Note just as describe in the fact above this power set has $2^3 = 8$ elements.
- 2. You try. Let $B = \{0, 1\}$. Describe P(B).
- 3. $P(\emptyset) = ?$
- 4. Let *A* be any set. True/False.

1.	$\emptyset \subseteq A$	
2.	$\{\emptyset\} \subseteq A$	
3.	$\emptyset \subseteq P(A)$	
4.	$\{\emptyset\} \subseteq P(A)$	
5.	$\emptyset \in A$	
6.	$\{a\} \in A$	
7.	$\{a\} \subseteq A$	
8.	$\{a\} \in P(A)$	
9.	$\{a\} \subseteq P(A)$	
10	$\{\{a\}\} \subseteq P(A)$	

Definition: The <u>ordered n-tuple</u> $(a_1, a_2, a_3, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its n^{th} element.

Definition: $(a_1, a_2, a_{3,...,} a_n) = (b_1, b_2, b_{3,...,} b_n)$ if and only if $(a_1 = b_1) \land (a_2 = b_2) \land ... \land (a_n = b_n)$

Terminology: (a_1, a_2) is called an <u>ordered pair</u>. (a_1, a_2, a_3) is called an <u>ordered triple</u>.

Definition: Let *A* and *B* be sets. The <u>Cartesian Product of A and B</u>, denoted $A \times B$, is the set of all ordered pairs (a,b) where $a \in A$ and $b \in B$. Hence in set builder notation, the cartesian product is $A \times B = \{(a,b) | a \in A \land b \in B\}.$

Example: Let $A = \{a, b\}$ and $B = \{0, 1, 2\}$. Find $A \times B$ and $B \times A$.

Def: <u>Generalized Cartesian Product</u>: Let $A_1, A_2, ..., A_n$ be sets. $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | (a_1 \in A_1) \land (a_2 \in A_2) \land ... \land (a_n \in A_n)\}$