1

Mathematical Induction

Theorem. (The Principle of Math Induction) (PMI) Let P(n) be a proposition.

If (i) P(1) is true

(ii) If $P(k) \rightarrow P(k+1)$ for every positive in integer then P(n) is true for every positive integer.

How to use the Principle of Mathematical Induction:

Step 1: Identify the math statement to be proven.

Step 2: Show that the statement is true for the natural number 1.

Step 3: Show that if we assume that the statement is true for some k, then it follows that the statement must also be true for k+1, i.e. property (ii).

Step 4: Conclusion: By the Principle of Math Induction....

Exercise 1: Prove the following using mathematical induction

Theorem
$$\forall n \in \mathbb{N}, \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
.

Proof: Step 1: Let P(n) be the statement $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Step 2:

Example 2: Prove that for all $n \in N$, $(1 + \frac{1}{2})^n \ge 1 + n/2$.

Assume _____. This means that

Thus if P(n) is true, then P(n+1) is also true. Hence by PMI, $(1+\frac{1}{2})^n \ge 1+n/2$ ______. **QED**

Example 3: Can PMI be used to show that $\forall n \in \mathbb{N}, n = n+1$? Solution: Let P(n) be the statement n = n + 1. Assume P(k) is true, that is assume k = k + l for some integer k.

$$k + 1 = (k+1) + 1$$
 since $P(k)$ is true $= k + 2$.

Thus P(k+1) is true whenever P(k) is true. Hence by PMI,...?

What happened? How could we prove this nonsense?

Example 4: Sums of Geometric Progressions. Use mathematical induction to prove the following formula for the sum of a finite number of terms of a geometric progression.

$$\sum_{j=0}^{n} ar^{j} = \frac{ar^{n+1} - a}{r - 1}, \quad \text{when } r \text{ is not equal to } 1.$$

Example 5: Use mathematical induction to prove that $2^n < n!$ for every positive integer n with $n \ge 4$.

Example 6: Use mathematical induction to prove that if S is an n element set, then $|P(S)| = 2^n$ for every positive integer n.