Ch. 2.4: Sequences and Summations

Def. Recall the natural numbers are denoted $N = \{1, 2, 3, ...\}$ and the whole numbers $W = \{0, 1, 2, 3, ...\}$. Let *S* be a subset of integers. A <u>sequence</u> is a function $f:N \rightarrow S$ or $f:W \rightarrow S$. Instead of f(n) we use the notation a_n to denote the image of the integer *n*. We call a_n the nth term of the sequence.

Sequences and summations occur in many Math and CS areas of study for example Linear algebra, Calculus, Number Theory, Complexity of Algorithms and Discrete Structures.

Notation: We use the notation $\{a_n\}$ to describe the sequence a_1, a_2, a_3, \ldots

Example: Consider the sequence $\{a_n\}$, where $a_n = \frac{1}{n}$ (*the general formula of the sequence*.)

The list of the terms of this sequence, beginning with a_1 , namely,

 $a_1, a_2, a_3, a_4, \dots$ starts with $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

Example: Consider the sequence $\{b_n\}$, where $b_n = (-1)^n$ (also called the rule of the sequence.)

The list of the terms of this sequence, beginning with b_1 , namely,

 $b_1, b_2, b_3, b_4, \dots$ starts with

-1, 1, -1, 1, -1, 1, ...

Exercise: What are the a_0 , a_1 , a_2 , a_3 terms of the following sequences?

	a_0	a_1	a_2	a_3
$\{ 4^n \}$				
$\left\{ \left\lfloor \frac{n}{2} \right\rfloor \right\}$				
$\{ n! \}$				

Def. Finite sequences $a_1, a_2, a_3, \dots a_n$ are called <u>strings</u>. A string is also denoted by $a_1 a_2 a_3 \dots a_n$ (without the commas.)

Special Integer Sequences

<u>Arithmetic sequences</u> are those such that consecutive differences are constant. The general formula for the nth term is a + d(n-1) where *a* is the first term and *d* is the constant difference. Example: 1, 3, 5, 7, 9, ...

Find the n^{th} term (i.e. the general rule) _____ The 100th term is _____

Example: 0, 50, 100, 150, 200, ... Find the n^{th} term _____ The 100th term is _____

<u>Geometric sequences:</u> are those such that consecutive ratios $(2^{nd}$ term divided by the 1st, 3rd term divided by the 2nd, etc.) are constant. The general formula for the nth term is ar^{n-1} where *a* is the first term and *r* is the constant ratio.

Example: 3, 6, 12, 24, 48, ... Find the n^{th} term _____ Find the 100^{th} term _____

Example: 10, 100, 1000, 10,000, 100,000, ... Find the n^{th} term _____ The 100th term is _____

Suppose that we are given a numerical sequence that is neither an arithmetic nor geometric sequence. What to do then? Other tool to consider for discovering patterns:

- Are the terms dependant on previous terms?
- Are the terms squares? Or cubes?
- Are some terms repeated?

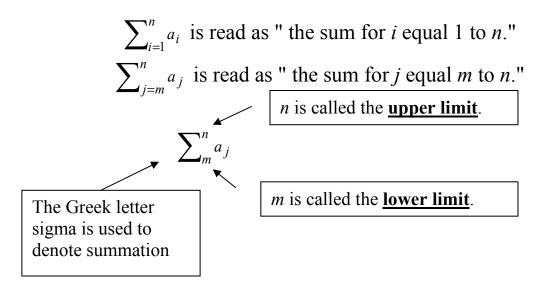
Example: 1, 8, 27, 64, 125, ...

Find a simple formula (or general rule) for the sequence.

Example: 1, 1, 2, 3, 5, 8, 13 ... (**Fibonacci sequence**) Find a simple formula (or general rule) for the sequence.

Summations

Notation: The sum $a_1 + a_2 + a_3 + ... + a_n$ is represented by the <u>summation notation</u> $\sum_{i=1}^{n} a_i$. The variable *i* is called the <u>index of</u> summation.



4

Exercise: Express the sum of the first 100 terms of the sequence $\{a_n\}$, where $a_n = \frac{1}{n}$, for n = 1, 2, 3, ...

Exercise: What is the value of
$$\sum_{j=5}^{7} j^2$$
?
Exercise: What is the value of $\sum_{j=0}^{4} 2^j$?

Exercise: What is the value of $\sum_{k=1}^{5} 2^{(k-1)}$?

Double Summations $\sum_{i=1}^{3} \sum_{j=0}^{2} ij =$

A set index summation $\sum_{s \in \{0,1,3\}} s^2 =$

Manipulating the Notation:

- Suppose we have the sum $\sum_{j=1}^{l} j^2$ and that we need to **change**

the summation notation so that the lower limit is 0. Note that this is accomplished by letting m = j-1. Then j = m+1, and

$$\sum_{j=1}^{7} j^2 = \sum_{m=0}^{6} (m+1)^2 \, .$$

- By associativity,
$$\sum_{j=1}^{6} j^2 + 7^2 = \sum_{j=1}^{7} j^2 = 1 + \sum_{j=2}^{7} j^2$$

- Note:
$$\sum_{j=1}^{6} j^2 + 7^2 \neq \sum_{j=1}^{6} (j^2 + 7^2)$$
 (Beware of parenthesis)

- By the distributive property of multiplication over addition,

$$3\left(\sum_{k=1}^{n} k\right) = \sum_{k=1}^{n} 3k$$

Example: The sum of the first *n* terms of a geometric sequence is called a **geometric progression**.

Theorem
$$\sum_{j=0}^{n} ar^{j} = \frac{ar^{n+1} - a}{r-1} \text{ if } r \neq 1$$

Proof will be given in a later section.

Exercise: What is the value of $\sum_{k=1}^{n} [3 \cdot 2^{(k-1)} + 5 \cdot 2^{k}]?$