Functions

Def. Let *A* and *B* be sets. A <u>function *f* from *A* to *B*</u> is an assignment of exactly one element of *B* to each element of *A*. We write f(a) = b if *b* is the unique element of *B* assigned by the function *f* to the element *a* of *A*. If *f* is a function from *A* to *B*, we write $f(A) \rightarrow B$.

How is definition written in symbolic logic notation?

Example 1:

True or False: *f* is a function from the set $A = \{1, 2, 3, 4, 5\}$ to the set $B = \{3, 4, 5, 6\}$ if the assignment rule is f(1) = 3, f(2) = 3, f(3) = 1, f(3) = 2, f(4) = 5.

True or False: *f* is a function from the set $A = \{1, 2, 3, 4, 5\}$ to the set $B = \{3, 4, 5, 6\}$ if the assignment rule is f(1) = 3, f(2) = 3, f(3) = 4, f(4) = 5.

True or False: *f* is a function from the set $A = \{1, 2, 3, 4, 5\}$ to the set $B = \{3, 4, 5, 6\}$ if the assignment rule is f(1) = 3, f(2) = 3, f(3) = 4, f(3) = 2, f(4) = 5, f(5) = 6.

Definition: A bit string is a sequence of 0's and or 1's. Let us assume that the first bit is the rightmost bit. The **length** of a bit string is the number of bits in the string.

Example 2: Determine whether *f* is a function from the set of all finite length bit strings to the set of integers if

- a) f(S) is the position of a *I* bit in the bit string *S*.
- b) f(S) is the smallest integer *i* such that the *i*th bit of *S* is *1*.
- c) f(S) is the smallest integer *i* such that the *i*th bit of *S* is *1* and f(S) = 0 whenever *S* is the empty string or the constant 0's string.

Example3: Determine whether *f* is a function from the set of real numbers to the set of real numbers if

a)
$$f(a) = \sqrt{a}$$

b) $f(a) = a^{2}$

Definitions.

- If *f* is a function from *A* to *B*, we say that *A* is the **<u>domain</u>** of *f* and *B* is the **<u>codomain</u>** of *f*.
- If f(a) = b, we say that b is the **image** of a and a is a **pre-image** of b.
- The <u>**range**</u> of *f* is the set of all images of elements of *A*.
- Also, if f is a function from A to B, we say that <u>f maps A to B</u>.

Example 4: Let *R* be the set of real numbers. Define $f: R \to R$ by f(x) = x + l.

In this example we see that:

- 1. The domain is R.
- 2. The codomain is *R*.
- 3. Since f(3) = 4, the number 4 is the image of the number 3, and 3 is the preimage of 4.
- 4. The range is *R*.

Example 5: Let Z be the set of integers, and Z^+ be the set of nonnegative integers. Define $f: Z \to Z$ by $f(x) = x^2$. In this example we see that:

In this example we see that:

- 1. The domain is _
- 2. The codomain is _
- 3. Since f(-2) = 4, the number 4 is the _____ of the number -2, and -2 is the _____ of 4.
- 4. The range is Z^+ . (Note that the codomain is not the same as the range).

Example 6: The **floor function** assigns to the real number *x* is the largest integer that is less than or equal to *x*. The value of the floor function at *x* is denoted by $\lfloor x \rfloor$.

- 1. What is the domain of this function?
- 2. What is the range of this function?
- 3. What is the image of 1.99?
- 4. What is "a" pre-image of 4?

Definition: The **ceiling function** assigns to the real number *x* is the smallest integer that is greater than or equal to *x*. The value of the ceiling function at *x* is denoted by $\lceil x \rceil$.

Definition. Let *f* be a function from the set *A* to the set to the set *B* and let *S* be a subset of *A*. The <u>image of *S*</u> is the subset of *B* that consists of the images of the elements of *S*. We denote the image of *S* by f(S), so that $f(S) = \{f(s) | s \in S\}$.

Example 7:

- i) Let $f: R \to R$ be defined by $f(x) = 2\lfloor x \rfloor$ and $S = \{x \mid 0 < x < 3\}$. Find f(S) =
- ii) Let $f: R \to R$ be defined by $f(x) = x^2 + 1$ and let $S = \{0, 1, 2\}$. Find f(S) =
- iii) Let $f: \overline{R \to R}$ be defined by f(x) = 3x + 1 and let $S = \{0, 1, 2\}$. Find $f(S) = _$

Theorem Let *f* be a function from the set *A* to the set *B*. Let *S* and *T* be subsets of *A*. Then $f(S \cup T) = f(S) \cup f(T)$.

Definition. A function *f* is said to be <u>one-to-one</u>, or <u>injective</u>, if and only if f(x) = f(y) implies that x = y for all *x* and *y* in the domain of *f*. A function is said to be an <u>injection</u> if it is one-to-one.

Example 8:

True or False: The function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one.

True or False: The function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 4, f(c) = 1, and f(d) = 3 is one-to-one.

True or False: The function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.

Example 9: Let *S* be a bit string of length *n*. Define f(S) as the smallest integer *i* such that the *i*th bit of *S* is *1* and f(S) = 0 when *S* is the zero string or the empty string. Is this function one-to-one?

Example 10: Prove that the real valued function f(x) = x + 1 is one-to-one.

Definition: A function *f* whose domain and codomain are subsets of the set of real numbers is called <u>strictly increasing</u> if f(x) < f(y) whenever x < y and *x* and *y* are in the domain of *f*. Similarly, *f* is called <u>strictly decreasing</u> if f(x) > f(y) whenever x < y and *x* and *y* are in the domain of *f*.

Axiom of the Real Numbers (tricotomy) : For any two real numbers one of the following properties holds x = y, x < y, or x > y.

Theorem. Let f be a real valued function. If f is strictly increasing (or strictly decreasing), then f is one-to-one. Proof. **Definition**. A function *f* is said to be <u>onto</u>, or <u>surjective</u>, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function is called a <u>surjection</u> if it is onto.

Example: Let *f* be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is *f* onto $\{1, 2, 3\}$ function?

Example 11: Determine whether the real valued function f(x) = x + 1 is onto.

Example 12: Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is onto.

Definition. The function *f* is called a <u>one-to-one correspondence</u>, or a <u>bijection</u> if it is both one-to-one and onto.

Definition. Let *f* be a bijection from the set *A* to the set *B*. The <u>inverse</u> <u>function of *f*</u> is the function that assigns to an element *b* belonging to *B* the unique element *a* in *A* such that f(a) = b. The inverse function of *f* is denoted by f^{I} . Hence, $f^{I}(b) = a$ when f(a) = b.

Terminology: A one-to-one correspondence is called *invertible*.

Example 13: Let *f* be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1. Is *f* an invertible function? If so describe the inverse function.

Example 14: Let $f: Z \to Z$ defined by f(x) = x + 1. Is *f* invertible? If so describe the inverse function.

Example 15: Let $f: Z \to Z$ defined by $f(x) = x^2$. Is *f* invertible? If so describe the inverse function.

Definition. Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The **composition of the functions f and** g, denoted by $f \circ g$, is defined by $(f \circ g)(x) = f(g(x))$.

Example 16: Let $f : Z \to Z$ and $g : Z \to Z$ defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of *f* and *g*? What is the composition of *g* and *f*?

Definition: Let *A* be a set. The <u>identity function on *A*</u> is the function $i_A : A \to A$ where $i_A(x) = x$.

Fact: Let $f: A \to B$ be an invertible function. If f(a) = b, then $(f^{-1} \circ f)(a) = a$ and $(f \circ f^{-1})(b) = b$.

Graphs of Functions

Definition. Let $f: A \to B$. The **graph of the function** f is the set of ordered pairs $\{(a,b) | a \in A \text{ and } f(a) = b\}$ (A graph is a subset of the Cartesian product $A \times B$)

Example: Let $f: Z \rightarrow Z$ be defined by f(n) = 2n + 1. Display the graph of f.

Example: Let $f : R \to Z$ be defined by $f(x) = \lfloor x \rfloor$. Display the graph of f.

Exercise :

Let *S* be a subset of a universal set *U*. The **characteristic function** f_S of *S* is the function from *U* to the set $\{0, 1\}$ (i.e. $f_S : U \to \{0,1\}$) such that $f_S(x) = 1$ if *x* belongs to *S* and $f_S(x) = 0$ if *x* does not belong to *S*. Let *A* and *B* be sets. Show that for all *x*

a) $f_{A \cap B}(x) = f_A(x) \cdot f_B(x)$

Proof:	You	give	the	reasons.
		0		

U		
$f_{A \cap B}(x) = 1$	$\Leftrightarrow x \in A \cap B$	
	$\Leftrightarrow x \in A \land x \in B$	
	$\Leftrightarrow f_A(x) = 1 \land f_B(x) = 1$	
	$\Leftrightarrow f_A(x) \cdot f_B(x) = 1$	