Ch 2.2 Set Operations

Definitions. Let *A* and *B* be sets.

- 1. The <u>union of sets A and B</u> is denoted and defined as follows: $A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$
- 2. Fact: $|A \cup B| = |A| + |B| |A \cap B|$
- 3. The <u>intersection of sets A and B</u> is denoted and defined as follows: $A \cap B = \{x \mid (x \in A) \land (x \in B)\}$
- 4. Two sets *A* and *B* are said to be **<u>disjoint</u>** if $A \cap B = \emptyset$.
- 5. The symmetric difference of two sets A and B, denoted by A B, is defined as follows: $A B = \{x \mid (x \in A) \land (x \notin B)\}$.
- 6. The <u>complement of a set A</u>, denoted by \overline{A} , is defined as follows: $\overline{A} = \{x \mid x \notin A\}.$

Example 1: Prove $(A-B)-C \subseteq A-C$.

Example 2: Prove DeMorgan's Law: $\overline{A \cup B} = \overline{A} \cap \overline{B}$. Recall that X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$. Proof: **Example 3**: Prove $A \cup U = U$ (Note that this is one of the domination laws)

Example 4: Prove DeMorgan's Law: $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Example 5: Find the Error in the following proof. Note the statement is true but the proof has errors.

Prove that $A - B = A \cap \overline{B}$ Proof.

A-B	$= \{x \mid (x \in A) \cap (x \notin B)\}$	By definition of set difference
	$= x \mid (x \in A) \cap \left(x \in \overline{B}\right)$	By definition of the complement of a set
	$= x \mid A \cap \overline{B}$	By definition of the intersection

End of Proof.

Set Identities: Table 1 on page 49 of our text consists of set identities, many
of which we will prove.

Set Identities	
Identity	Name
$A \cup \emptyset = A$	Identity laws
$A \cap U = A$	
$A \cup U = U$	
$A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$	
$A \cap A = A$	Idempotent laws
$\overline{\overline{A}} = A$	Complementation
	law
$A \cup B = B \cup A$	Commutative laws
$A \cap B = B \cap A$	Commutative laws
$(A \cup B) \cup C = A \cup (B \cup C)$	
$(A \cap B) \cap C = A \cap (B \cap C)$	Associative laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$	

There are many proof techniques used to prove set identities (we will omit membership tables.) Two of these methods were illustrated above and below is a demonstration of another method.

Example 6: Show $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

Proof.

$\boxed{\overline{A \cup (B \cap C)}}$	$=\overline{A}\cap\overline{(B\cap C)}$	By DeMorgan's Law for sets.
	$=\overline{A}\cap(\overline{B}\cup\overline{C})$	By DeMorgan's Law for sets.
	$= (\overline{B} \cup \overline{C}) \cap \overline{A}$	
	$= (\overline{C} \cup \overline{B}) \cap \overline{A}$	

End of Proof.

4

Generalized Unions and Intersections

Let $A_1, A_2, ..., A_n$ be sets. $\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup ... \cup A_n.$ Note: an element is in the union if it is in at least one of the A_i for i=1, 2, 3, ... n. $\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap ... \cap A_n.$ Note: an element is in the intersection if it is in each of the A_i

for *i*=1, 2, 3, ... *n*.

Example 7.

Let $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ...(a) List the elements of $A_1 =$ (b) List the elements of $A_2 =$ (c) List the elements of $\bigcup_{i=1}^{5} A_i =$ (d) If *n* is greater than 2, then list the elements of $\bigcup_{i=1}^{n} A_i =$ (e) List the elements of $\bigcap_{i=1}^{5} A_i =$ (f) If *n* is greater than 2, then list the elements of $\bigcap_{i=1}^{n} A_i =$

Example 8.

Let $A_i = \{i, i+1, i+2...\}$ for i = 1, 2, 3, ...(a) If *n* is greater than 3, find $\bigcup_{i=2}^{n} A_i =$ (b) If *n* is greater than 3, find $\bigcap_{i=2}^{n} A_i =$