Ch. 1.6 Methods of Proofs

The following methods of proofs are discussed in our text:

- Vacuous proof
- Trivial proof
- Direct proof
- Indirect proof
- Proof by contradiction
- Proof by cases.
- A vacuous proof of an implication happens when the hypothesis of the implication is always false.

Example 1: Prove that if x is a positive integer and x = -x, then $x^2 = x$. *proof.*

- An implication is **trivially true** when its conclusion is always true.
- A declared mathematical proposition whose truth-value is unknown is called a **conjecture**.

One of the main functions of a mathematician (and a computer scientist) is to decide the truth-value of their claims (or someone else's claims).

- If a conjecture is proven true we call is a *theorem*, *lemma* or *corollary*; if it proven false, then usually discarded.
- A **proof** is a sequence of statements bound together by the rules of logic, definitions, previously proven theorems, simple algebra and axioms.

Definition: An integer *n* is even if there exists an integer *k* such that n = 2k. An integer *n* is odd if there exists an integer *k* such that n = 2k + 1.

Axiom (Closure of addition over the integers): If a and b are integers, then a + b is an integer.

Axiom (Closure of multiplication over the integers): If a and b are integers, then $a \cdot b$ is an integer.

Example 2: Prove or disprove that the product of two irrational numbers is irrational.

Example 3: prove lemma 1. **Lemma 1.** If *n* is even, then n^2 is even. Proof:

Example 4: Prove lemma 2 **Lemma 2.** If n^2 is even, then *n* is even. Proof: **Theorem 1**: An integer *n* is even if and only if n^2 is even. *Proof:* If *n* is even, then n^2 is even is true by Lemma 1. The converse, if n^2 is even, then *n* is even is true by Lemma 2. Hence the biconditional statement *n* is even if and only if n^2 is even is true.

Example 5: Prove that the sum of two odd integers is even. i.e. If p and q are odd integers, then p + q is an even integer. Proof:

Summary. If we are proving $p \rightarrow q$, then

	1)
A direct proof begins by	An indirect proof begins by
assuming <i>p</i> is true.	assuming $\sim q$ is true.
:	:
:	:
until we conclude q .	until we conclude $\sim p$.

Example 6: Prove that $\sqrt{2}$ is irrational.

Proof: Assume by way of contradiction that can be represented as a quotient of two integers p/q where q is not zero. Further, we assume that p/q is in lowest terms, i.e. we assume that

The integers p and q have no common factor. (1)

Thus, by assumption $\sqrt{2} = p/q$, and now squaring both sides yields

$$2 = \frac{p^2}{q^2}$$
 or $p^2 = 2q^2$ (2)

This implies that p^2 is even, and by Theorem 1, p must also be even. So we write p = 2k, substitute into the second equation of (2), and by cancellation we see that

$$q^2 = 2k^2. (3)$$

This says that q^2 is even, and again by Theorem 1, q must also be even. From statements (2) and (3), it follows that

p and q both have 2 as a common factor.(4)

Statements (1) and (4) are contradictory. Thus, $\sqrt{2}$ is not rational.

Summary. If we are proving $p \rightarrow q$, then		
A direct proof	An indirect proof	An proof by
begins by	begins by assuming $\sim q$	contradiction
assuming <i>p</i> is	is true.	begins by assuming
true.		$p \land \neg q$ is true.
:	:	:
•	until we conclude $\sim p$.	•
until we conclude		until we reach a
q.		contradiction

Summary. If we are proving $p \rightarrow q$, then

Example 7: Prove that if 3n + 2 is odd, then *n* is odd.

- i. Write the proposition in symbolic logic notation.
- ii. Write the negation of the proposition in symbolic logic notation.
- iii. Proof:

Example 8: Prove that there is an even prime number.

Definition. Let *x* be a real number. Then $|x| = \begin{cases} x \text{ if } x \ge 0 \\ -x \text{ if } x < 0 \end{cases}$.

Example 9: Prove if *x* is a real number, then |-x| = |x|.

Definition. A function $f:A \to B$ is *one-to-one* if and only if $\forall x \forall y (f(x) = f(y) \to x = y),$ which is logically equivalent to its contrapositive $\forall x \forall y (x \neq y \to f(x) \neq f(y)).$

Example 10: Prove that the real valued function f(x) = x + 1 is one-to-one.