Propositional Equivalences

Def. A compound proposition that is always true, no matter what the truth values of the (simple) propositions that occur in it, is called <u>tautology</u>. A compound proposition that is always false, no matter what, is called a <u>contradiction</u>. A proposition that is neither a tautology nor a contradiction is called a <u>contingency</u>.

Examples: Let p be a proposition. Indicate whether the propositions are: (A) tautologies (B) contradictions or (C) contingencies.

Proposition	type
$p \lor \neg p$	
$p \land \neg p$	
x+7=18 for every real	
number <i>x</i>	

Def. The propositions *p* and *q* are called <u>logically equivalent</u> if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that *p* and *q* are logically equivalent. Some text books use the notation $p \Leftrightarrow q$ to denote that *p* and *q* are logically equivalent.

Objective of the section:

You must learn to determine if two propositions are logically equivalent by the

- truth table method **and**
- by the logical proof method (using the tables of logical equivalences.)

Exercise 1: Use truth tables to show that $\neg \neg p \equiv p$ (the double negation law) is valid.

Exercise 2: Use truth tables to show that $p \wedge T \equiv p$ (an identity law) is valid.

Equivalence	Name
$p \land T \equiv p$	Identity laws
$p \lor F \equiv p$	
$p \lor T \equiv T$	Domination laws
$p \land F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \land p \equiv p$	
$\neg \neg p \equiv p$	Double negation law
$p \lor q \equiv q \lor p$	Commutative laws
$p \land q \equiv q \land p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \land q) \land r \equiv p \land (q \land r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor \neg p \equiv T$	Negation laws
$p \land \neg p \equiv F$	
$(p \to q) \equiv \neg p \lor q$	Other useful logical equivalence
$(p \to q) \equiv \neg q \to \neg p$	

Note: Any equivalence termed a "law" will be proven by truth table, but all others by proof (as we shall see next).

Exercise 3: State the name of the law used in the identity

i. $\neg(\neg p \land q) \lor T \equiv T$ ii. $T \vee \neg (\neg p \land q) \equiv \neg (\neg p \land q) \lor T$ iii. $\neg(\neg p \land q) \land T \equiv \neg(\neg p \land q)$ iv. $\neg(\neg p \land q) \equiv \neg \neg p \lor \neg q$

Exercise 4: Without truth tables to show that $\neg(\neg p \land q) \equiv p \lor \neg q$

Exercise 5: *Without* truth tables to show that $\left[\neg (p \land q) \lor (p \land q)\right] \equiv \mathbf{T}$

Exercise 6: *Without* truth tables to show that

 $\neg p \land (p \lor q) \equiv \neg p \land q$

Exercise 7: *Without* truth tables to show that $\neg (p \lor (\neg p \land q)) \equiv \neg (p \lor q)$

Exercise 8: *Without* truth tables to show that $(\neg p \rightarrow q) \equiv p \lor q$.

Exercise 9: *Without* truth tables to show that $\neg (p \rightarrow q) \equiv p \land \neg q$.

Exercise 10: *Without* truth tables to show that $\neg (\neg p \lor (p \lor q)) \rightarrow q$ is a tautology.

Exercise 11: *Without* truth tables to show that an implication and it's contrapositive are logically equivalent.

Applications

In addition to providing a foundation for theorem proving, which we will cover in this class, this algebraic look at logic can be studied further for the purpose of discussion computer program correctness.