Ch. 1.4 Nested Quantifiers

Main idea: Quantifiers may appear within the scope of other quantifiers.

Example 1: Assume that the universe of discourse for the variables *x* and *y* consists of all real numbers. The statement $\forall x \forall y(x + y = y + x)$ says that for every real number *x* and for every real number *y*, x + y = y + x. This is the ______ law for addition of real numbers.

Example 2: Assume that the universe of discourse for the variables *x* and *y* consists of all real numbers. The statement $\forall x \exists y(x + y = 0)$ says that for every real number *x* there exists a real number *y*, such that x + y = 0. This is the ______ law for addition of real numbers.

Example 3: Assume that the universe of discourse for the variables *x* and *y* consists of all real numbers.

- i. Translate the statement $\exists x \forall y(x + y = 0)$ to English.
- ii. What is the truth value of $\exists x \forall y (x + y = 0)$.

The **order of quantifiers** of is important unless all the quantifiers are universal of all existential. As we have seen in the previous two examples $\exists x \forall y P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent.

 $\forall x \exists y P(x, y)$

 $\exists x \forall y P(x, y)$

Example 4: Translate the statement "The sum of two positive integers is positive" into a logical expression.

Example 5: Translate the statement "Every real number except zero has a multiplicative inverse" into a logical expression.

Example 6: Assume the universe of discourse is the set of elements a set U. Let A and B be subsets of U. A function from A to B is *one-to-one* if for every a and b in A, a=b whenever f(a) = f(b).

- i) Express the definition in terms of logical connectives and quantifiers.
- ii) Using part i) explain when a function is not *one-to-one*.

Example 7: Determine the truth value of each of the following statements if the universe of discourse for all variables consists of all integers.

- a) $\forall n \exists m (n^2 < m)$
- b) $\exists n \forall m(n^2 < m)$
- c) $\neg \exists n \forall m(n^2 < m)$
- d) $\exists n \forall m(nm = m)$
- e) $\exists n \forall m(nm = m)$
- f) $\exists n \exists m(n^2 + m^2 = 5)$
- g) $\exists n \exists m(n^2 + m^2 = 6)$
- f) $\exists n \exists m(n+m=4 \land n-m=1)$
- h) $\exists n \exists m(n+m=4 \land n-m=2)$
- i) $\forall n \forall m \neg (n + m = 4 \land n m = 2)$
- j) $\forall n \forall m(n + m \neq 4 \lor n m \neq 2)$